Skip to main content
  • 516 Accesses

Abstract

There are three goals for intraoperative neurophysiologic monitoring. The first is to reduce the risk of neurologic complications by detecting insults to neuronal structures. The second is to provide guidance that may affect a surgeon’s approach or actions, such as mapping the location of sensory and motor tracts within the spinal cord. The third is to perform studies detailed enough to help understand normal and pathophysiologic function. Intraoperative spinal reflex techniques are used to help accomplish these three goals. They are used to monitor the function of peripheral nerve, plexus, nerve root, and segmental and suprasegmental function. These reflex techniques will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leppanen RE. Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. A position statement by the American society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19:437–61.

    Article  PubMed  Google Scholar 

  2. Leppanen RE. Intraoperative applications of the H-reflex and F-response: a tutorial. J Clin Monit Comput. 2006;20:267–304.

    Article  PubMed  Google Scholar 

  3. Leppanen R, Maguire J, Wallace S, et al. Intraoperative recording of long-latency lower-extremity reflexes for the detection of suprasegmentally altered complex spinal cord electrophysiological processing. Electroencephalogr Clin Neurophysiol. 1993;86:28P.

    Google Scholar 

  4. Leis AA, Zhou HH, Mehta M, et al. Behavior of the H-reflex in humans following mechanical perturbation or injury to rostral spinal cord. Muscle Nerve. 1996;19:1377–8.

    Article  Google Scholar 

  5. Lloyd DPC. Reflex action in relation to pattern and source of afferent stimulation. J Neurophysiol. 1943;6:111–20.

    Article  Google Scholar 

  6. Grillner S. Control of locomotion in bipeds, tetrapods and fish. In: Brookhart JM, Mountcastle VB, editors. Handbook of physiology. The nervous system. vol 2, Part 2. Motor control. Baltimore, MD: Williams & Wilkins; 1981. p. 1179–236.

    Google Scholar 

  7. Anderson B, Binder M. Spinal and supraspinal control of movement and posture. In: Patton HD, Fuchs AF, Hillie B, Scher AM, Steiner R, editors. Textbook of physiology: excitable cells and neurophysiology. Philadelphia, PA: W.B. Saunders; 1988. p. 563–81.

    Google Scholar 

  8. Binder M. Peripheral motor control: spinal reflex actions of muscle, joint and cutaneous receptors. In: Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R, editors. Textbook of physiology: excitable cells and neurophysiology. Philadelphia, PA: W.B. Saunders; 1988. p. 522–48.

    Google Scholar 

  9. MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Phys Ther. 2002;82:69–83.

    Article  PubMed  Google Scholar 

  10. Dietz V. Spinal cord pattern generators for locomotion. Clin Neurophysiol. 2003;114:1379–89.

    Article  CAS  PubMed  Google Scholar 

  11. Ghez C. The control of movement. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 3rd ed. East Norwalk, CT: Appleton and Lange; 1991. p. 533–47.

    Google Scholar 

  12. Sherrington CS. The integrative action of the nervous system. New Haven, CT: Yale University Press; 1906.

    Google Scholar 

  13. Calancie B, Broton JG, Klose KJ, Traad M, Difini J, Ayyar DR. Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man. Electroencephalogr Clin Neurophysiol. 1993;89:177–86.

    Article  CAS  PubMed  Google Scholar 

  14. Barnes CD, Joynt RJ, Schottelius BA. Motoneuron resting potentials in spinal shock. Am J Physiol. 1962;203:113–6.

    Article  Google Scholar 

  15. Walmsley B, Tracy DJ. The effect of spinal cord transection on synaptic transmission between Ia afferents and motorneurones. Neuroscience. 1983;9:445–51.

    Article  CAS  PubMed  Google Scholar 

  16. Schadt JC, Barnes CD. Motoneuron membrane changes associated with spinal shock and Schiff-Sherrington phenomenon. Brain Res. 1980;201:373–83.

    Article  CAS  PubMed  Google Scholar 

  17. Cope TC, Nelson SG, Mendell LM. Factors outside neuraxis mediate “acute” increase in EPSP amplitude caudal to spinal cord transection. J Neurophysiol. 1980;44(1):174–83.

    Article  CAS  PubMed  Google Scholar 

  18. Kliefoth AB, Leppanen R, Selcer R, Sims M. Electrophysiological peripheral nerve, spinal cord and optic nerve changes associated with graded levels of ultrasonic aspiration. Electroencephalogr Clin Neurophysiol. 1992;83:84P.

    Google Scholar 

  19. Leis AA, Kronberg MF, Stetkarova I, Paske WC, Stokic DS. Spinal motoneuron excitability after acute spinal cord injury in humans. Neurology. 1996;47:231–7.

    Article  CAS  PubMed  Google Scholar 

  20. Táboríková H, Sax DS. Motoneurone pool and the H-reflex. J Neurol Neurosurg Psychiatry. 1968;31:354–61.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kimura J. Principles of nerve conduction studies. In: Electrodiagnosis in diseases of nerve and muscle: principles and practice. Philadelphia, PA: FA Davis; 1983. p. 353–98.

    Google Scholar 

  22. Slimp JC. Electrophysiologic intraoperative monitoring for spine procedures. Phys Med Rehabil Clin N Am. 2004;15:92.

    Article  Google Scholar 

  23. Leppanen R. Spinal cord injury changes caudal segmental spinal cord excitability resulting in changes to spinal cord signal processing and modulation of late response recordings. Spine J. 2005;5(1):115–7.

    Article  PubMed  Google Scholar 

  24. Rydevik B, Brown MD, Lundborg G. Pathoanatomy and pathophysiology of nerve root compression. Spine. 1984;9(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  25. Olmarker K. Spinal nerve root compression: nutrition and function of the porcine cauda equina compressed in vivo. Acta Orthop Scand Suppl. 1991;242(62):1–27.

    Article  CAS  PubMed  Google Scholar 

  26. Bertrand G. The “battered” root problem. Orthop Clin North Am. 1975;6:305–10.

    Article  CAS  PubMed  Google Scholar 

  27. Feltes C, Fountas K, Davydov R, Dimopoulos V, Robinson JS Jr. Effects of nerve root retraction in lumbar discectomy. Neurosurg Focus. 2002;13(2):E6.

    Article  PubMed  Google Scholar 

  28. Matsui H, Kitagawa H, Kawaguchi Y, Tsuji H. Physiologic changes of nerve root during posterior lumbar discectomy. Spine (Phila Pa 1976). 1995;20(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  29. Garfin SR, Rydevik B, Lind B, Massie J. Spinal nerve root compression. Spine. 1995;20:1810–20.

    Article  CAS  PubMed  Google Scholar 

  30. Nagayama R, Nakamura H, Yamano Y, Yamamoto T, Minato Y, Seki M, Konishi S. An experimental study of the effects of nerve root retraction on the posterior ramus. Spine. 2000;25:418–24.

    Article  CAS  PubMed  Google Scholar 

  31. Howe JF, Loeser JD, Calvin WH. Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain. 1977;3(1):25–41.

    Article  PubMed  Google Scholar 

  32. Dumitru D. Special nerve conduction techniques. In: Dumitru D, editor. Electrodiagnostic medicine. Baltimore, MD: Mosby; 1995. p. 191–209.

    Google Scholar 

  33. Oh SJ. Anatomical and physiological basis for electromyography studies. In: Oh SJ, editor. Clinical electromyography: nerve conduction studies. 2nd ed. Baltimore, MD: Williams & Wilkins; 1993. p. 51.

    Google Scholar 

  34. Burke D, Adams RW, Skuse NF. The effects of voluntary contraction on the H reflex of human limb muscles. Brain. 1989;112:417–33.

    Article  PubMed  Google Scholar 

  35. Preston DC, Shapiro BE. Late responses. In: Electromyography and neuromuscular disorders: clinical-electrophysiologic correlations. Boston, MA: Butterworth-Heinemann; 1998. p. 45–56.

    Google Scholar 

  36. Leppanen R, Miller C, Gammeltoff K, Madigan R, Sears C, et al. Intraoperative interaction of descending transcranial electrical motor evoked potentials and ascending somatosensory evoked potentials and F-responses. J Clin Neurophysiol. 2005;22(5):61.

    Google Scholar 

  37. Leppanen R. Intraoperative applications of the H-reflex and F-response: a tutorial. J Clin Mont Comp. 2006;20:267–304.

    Article  Google Scholar 

  38. Aminoff MJ. Other electrodiagnostic techniques for the evaluation of neuromuscular disorders. In: Aminoff MJ, editor. Electromyography in clinical practice: clinical and electrodiagnostic aspects of neuromuscular disease. 3rd ed. New York: Churchill Livingstone; 1998. p. 180.

    Google Scholar 

  39. Fisher MA. AAEM Minimonograph #13: H-reflexes and Fwaves: physiology and clinical indications. Muscle Nerve. 1992;15:1223–33.

    Article  CAS  PubMed  Google Scholar 

  40. Mayer RF, Mosser RS. Maturation of human reflexes. In: Desmedt JE, editor. New developments in electromyography and clinical neurophysiology, vol. 3. Basel: Karger; 1973. p. 294–307.

    Google Scholar 

  41. Hoffman P. Über die beziehungen der schnenreflexe zur willkürlichen bewegung und zum tonus. Z Biol. 1918;68:351–70.

    Google Scholar 

  42. Magladery JW, McDougal DB Jr. Electrophysiological studies of nerve and reflex activity in normal man. I. Identification of certain reflexes in the electromyogram and the conduction velocity of peripheral nerve fibers. Bull Johns Hopkins Hosp. 1950;86:265–90.

    CAS  PubMed  Google Scholar 

  43. Mayer RF, Mawdsley C. Studies in man and cat of the significance of the H-wave. J Neurol Neurosurg Psychiatry. 1965;28:201–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin JZ, Floeter MK. Do F-wave measurements detect changes in motor neuron excitability? Muscle Nerve. 2004;30:289–94.

    Article  PubMed  Google Scholar 

  45. Meunier S, Pierrot-Deseillgny E, Simonetta M. Pattern of monosynaptic heteronymous 1a connections in the human lower limb. Exp Brain Res. 1993;96:534–44.

    Article  CAS  PubMed  Google Scholar 

  46. Leppanen R. From the electrodiagnosis lab…H-reflexes in hand muscles after cervical spinal cord disease. Spine J. 2003;3(5):405.

    Article  PubMed  Google Scholar 

  47. Magladery JW, Teasdall RD, Park AM, Languth HW. Electrophysiological studies of reflex activity in patients with lesions of the nervous system. 1. A comparison of spinal motoneurone excitability following afferent nerve volleys in normal persons and patients with upper motor neurone lesions. Bull Johns Hopkins Hosp. 1952;91:219–44.

    CAS  PubMed  Google Scholar 

  48. Magladery JW, Teasdall RD. Stretch reflexes in patients with spinal cord lesions. Bull Johns Hopkins Hosp. 1958;103:236–41.

    CAS  PubMed  Google Scholar 

  49. Magladery JW, Porter WE, Park AM, Teasdall RD. Electrophysiological studies of nerve and reflex activity in normal man. IV. The two-neurone reflex and identification of certain action potentials from spinal roots and cord. Bull Johns Hopkins Hosp. 1951;88:499–19.

    CAS  PubMed  Google Scholar 

  50. Hugon M. Proprioceptive reflexes and the H-reflex. Methodology of Hoffman reflexes in man. In: Desmedt JE, editor. New developments in electromyography and clinical neurophysiology. Basel: Karger; 1973. p. 277–93.

    Google Scholar 

  51. Braddom RI, Johnson EW. Standardization of H-reflex and diagnostic use in S1 radiculopathy. Arch Phys Med Rehabil. 1974;55:161–6.

    CAS  PubMed  Google Scholar 

  52. Jankus WR, Robinson LR, Little JW. Normal limits of side-to-side H-reflex amplitude variability. Arch Phys Med Rehabil. 1994;75:3–7.

    Article  CAS  PubMed  Google Scholar 

  53. Ma MD, Liveson JA. Introduction. In: Ma MD, Liveson JA, editors. Nerve conduction handbook. Philadelphia, PA: F.A. Davis; 1983. p. 6.

    Google Scholar 

  54. Leppanen RE, Stoffell S, Sweat W. Intraoperative reflexes can be used to monitor nerve root and spinal cord gray matter function. Spine J. 2004;4(4):480–1.

    Article  PubMed  Google Scholar 

  55. Schimsheimer RJ, de Visser BW, Kemp B. The flexor carpi radialis H-reflex in lesions of the sixth and seventh cervical nerve roots. J Neurol Neurosurg Psychiatry. 1985;48:445–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schimsheimer RJ, Ongerboer de Visser BW, Kemp B. The flexor carpi radialis H-reflex in polyneuropathy: relations to conduction velocities of the median nerve and the soleus H-reflex latency. J Neurol Neurosurg Psychiatry. 1987;50:447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leis AA, Zhou HH, Mehta M, Harkey HL, Paske WC. Behavior of the H-reflex in humans following mechanical pertubation or injury to rostral spinal cord. Muscle Nerve. 1996;19:1378–9.

    Article  Google Scholar 

  58. Leppanen RE. Monitoring spinal nerve function with H-reflexes. J Clin Neurophysiol. 2012;29(2):126–39.

    Article  PubMed  Google Scholar 

  59. Zuleta-Alarcóna A, Castellón-Lariosa K, Niño-de Mejíab MC, Bergeseac SD. Total intravenous anesthesia versus inhaled anaesthetics in neurosurgery. Rev Colomb Anestesiol. 2015;43(Suppl 1):9–14.

    Google Scholar 

  60. Deiner S. Neuromonitoring syllabus. Rev Mex Anest. 2012;35(1):S307–15.

    Google Scholar 

  61. Shils JL, Sloan TB. Intraoperative neuromonitoring. Int Anesthesiol Clin. 2015;53(1):53–73.

    Article  PubMed  Google Scholar 

  62. Koht A, Sloan TB, Hemmer LB. Neuromonitoring in surgery and anesthesia. In: UpToDate, Crowly M, editor. UpToDate. Wolters Kluwer, Philadelphia; 2021. p. 1–11.

    Google Scholar 

  63. Sala F, Squintani G, Tramontano V, Arco C, Faccioli F, Mazza C. Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst. 2013;29:1611–24.

    Article  PubMed  Google Scholar 

  64. Sloan T. Anesthesia and intraoperative neurophysiological monitoring in children. Childs Nerv Syst. 2010;26:227–35.

    Article  PubMed  Google Scholar 

  65. Mahmoud M, Sadhasivam S, Salisbury S, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73.

    Article  CAS  PubMed  Google Scholar 

  66. Jameson LC. Transcranial motor evoked potentials. In: Koht A, Sloan TB, Toleikos J, editors. Monitoring the nervous system for anesthesiologists and other health care professionals. New York: Springer; 2012. p. 27–45.

    Chapter  Google Scholar 

  67. Rozet I, Metzner J, Brown M, et al. Dexmedetomidine does not affect evoked potentials during spine surgery. Anesth Analg. 2015;19:1–10.

    Google Scholar 

  68. Tobias JD, Goble TJ, Bates G, Anderson JT, Hoernschemeyer DG. Effects of dexedetomidine on intraoperative motor and somatosensory evoked potential monitoring during surgery in adolescents. Paediatr Anaesth. 2008;18(11):1082–8.

    Article  PubMed  Google Scholar 

  69. Anschel DJ, Aherne A, Soto RG, Carrion W, Hoegerl C, et al. Successful intraoperative spinal cord monitoring during scoliosis surgery using a total intravenous anesthetic regimen including dexmedetomidine. J Clin Neurophysiol. 2008;25(1):56–61.

    Article  PubMed  Google Scholar 

  70. Cramolini GM, Leppanen R, Smithson L. Effect of dexmedetomidine on neurophysiological monitoring during spinal surgery (EEG, tibial somatosensory and lower extremity transcranial electrical motor evoked potentials, F-responses and H-reflexes). J Clin Neurophysiol. 2010;27(1):74.

    Google Scholar 

  71. Kerz T, Hennes HJ, Fève A, Decq P, Filipetti P, Duvaldestin P. Effects of propofol on H-reflex in humans. Anesthesiology. 2001;94:32–7.

    Article  CAS  PubMed  Google Scholar 

  72. Mavroudakis N, Vandesteene A, Brunko E, Defevrimont M, Zegers de Beyl D. Spinal and brain-stem SEPs and H-reflex during enflurane anesthesia. Electroencephalogr Clin Neurophysiol. 1994;92:82–5.

    Article  CAS  PubMed  Google Scholar 

  73. Zhou HH, Mehta M, Leis AA. Spinal cord motoneuron excitability during isoflurane and nitrous oxide anesthesia. Anesthesiology. 1997;86:302–7.

    Article  CAS  PubMed  Google Scholar 

  74. Zhou HH, Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesthesiology. 2000;93:32–8.

    Article  CAS  PubMed  Google Scholar 

  75. Zhou HH, Turndorf H. Hyper- and hypoventilation affects spinal motor neuron excitability during isoflurane anesthesia. Anesth Analg. 1998;87:407–10.

    Article  CAS  PubMed  Google Scholar 

  76. Dincklage FV, Reiche J, Rehberg B, Baars JH. H-reflex depression by propofol and sevoflurane is dependent on stimulus intensity. Clin Neurophysiol. 2006;117:2653–60.

    Article  Google Scholar 

  77. Leis AA. Physiology of acute spinal cord injury (SCI) in humans. I. Behavior of the H-reflex and F-wave immediately following injury to rostral spinal cord in humans [abstract]. J Clin Neurophysiol. 1997;14(4):347.

    Google Scholar 

  78. Slimp JC. Electrophysiologic intraoperative monitoring for spine procedures. Phys Med Rehabil Clin N Am. 2004;15:93.

    Article  Google Scholar 

  79. Hicks GE. The reliability and specificity of the Hoffman’s reflex during pediatric spinal instrumentation. J Clin Monit Comput. 2004;18(3):210.

    Google Scholar 

  80. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  81. Leppanen R, Miller C, Gammeltoff K, et al. Intraoperative interaction of descending transcranial electrical motor evoked potentials and ascending somatosensory evoked potentials and f-responses. J Clin Neurophysiol. 2005;22(5):61.

    Google Scholar 

  82. Leppanen R. From the electrodiagnostic lab: where transcranial stimulation, H-reflexes, and F-responses monitor cord function intraoperatively. Spine J. 2004;4(5):601–3.

    Article  PubMed  Google Scholar 

  83. Bošnjak R, Makovek M. Neurophysiological monitoring of S1 root function during microsurgical posterior discectomy using H-reflex and spinal nerve root potentials. Spine. 2010;35(4):423–9.

    Article  PubMed  Google Scholar 

  84. Logigian EL, Soriano SG, Herrmann DN, Madsen JR. Gentle dorsal root retraction and dissection can cause areflexia: implications for intraoperative monitoring during “selective” partial dorsal rhizotomy. Muscle Nerve. 2001;24:1352–8.

    Article  CAS  PubMed  Google Scholar 

  85. Bracchi F, Grossi P, Trovati L, Vigano P. H-reflex spinal cord monitoring during vertebral stabilization. In: Boyd J, editor. Handbook of spinal cord monitoring. London: Kluwer; 1992. p. 253–8.

    Google Scholar 

  86. Bracchi F, Grossi PA, Trovati L, Vigano P. H-reflex spinal cord monitoring during vertebral column stablization surgery. In: Jones SJ, Boyd S, Hetreed M, Smith NJ, editors. Handbook of spinal cord monitoing. London: Kluwer Academic; 1994. p. 253–8.

    Chapter  Google Scholar 

  87. Rossi L, Bianchi AM, Merzagora A, Gaggiani A, Cerutti S, Bracchi F. Single trial somatosensory evoked potential extraction with arx filtering for a combined spinal cord intraoperative neuromonitoring technique. Biomed Eng Online. 2007;6:2.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Feyissa AM, Tummala S. Intraoperative neurophysiological monitoring with Hoffmann reflex during thoracic surgery. J Clin Neurosci. 2015;22(6):990–4.

    Article  PubMed  Google Scholar 

  89. Schwartz D, Bhalodia VM, Sestokas AK, Flynn JM, Shah SA, Gabos PG, et al. Is the intraoperative H-reflex a viable substitute for transcranial electrical motor evoked potential (tceMEP) monitoring in detecting emerging spinal cord injury during scoliosis surgery?: Poster #1. Spine. 2009;10:135.

    Google Scholar 

  90. Shine TSJ, Harrison BA, De Ruyter ML, Crook JE, Heckman M, Daube JR, et al. Motor and somatosensory evoked potentials, their role in predicting spinal cord ischemia in patients undergoing thoracoabdominal aortic aneurysm repair with regional lumbar epidural cooling. Anesthesiology. 2008;108:580–7.

    Article  PubMed  Google Scholar 

  91. Journée H-L, Polak HE, De Kleuver M, Langeloo DD, Postma AA. Improved neuromonitoring during spinal surgery using double-train transcranial electrical stimulation. Med Biol Engin Comput. 2004;42:110–3.

    Article  Google Scholar 

  92. Journée H-L, Polak HH, De Kleuver M. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses. Neurophysiol Clin. 2007;37:423–30.

    Article  PubMed  Google Scholar 

  93. Crone C, Nielsen J. Methological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res. 1989;78:28–32.

    Article  CAS  PubMed  Google Scholar 

  94. Andrews JC, Stein RR, Roy D. Reduced postactivation depression of soleus H reflex and root evoked potential after magnetic stimulation. J Neurophysiol. 2015;114:485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Andrews JC, Stein RB, Jones KE, Hedden DM, Mahood JK, Moreau MJ, Hunh EM, Roy FD. Intraoperative spinal cord monitoring using low intensity transcranial stimulation to remove post-activation depression of the H-reflex. Clin Neurophysiol. 2016;127:3378–84.

    Article  PubMed  Google Scholar 

  96. Rushworth G. Diagnostic value of the electromyographic study of reflex activity in man. Electroencephalogr Clin Neurophysiol. 1967;25:65–73.

    Google Scholar 

  97. Vodušek SA. Intraoperative recording of the bulbocavernosus reflex. J Clin Neurophysiol. 2014;31(4):313–22.

    Article  PubMed  Google Scholar 

  98. Deletis V, Vodusek D. Intraoperative recording of the bulbocavernosus reflex. Neurosurgery. 1997;40(1):88–93.

    CAS  PubMed  Google Scholar 

  99. Skinner S, Chiri CA, Wroblewski J, Transfeldt EE. Enhancement of the bulbocavernosus reflex during intraoperative neurophysiological monitoring through the use of double train stimulation: a pilot study. J Clin Monit Comput. 2007;21(1):31–40.

    Article  PubMed  Google Scholar 

  100. Khealani B, Husain AM. Neurophysiologic intraoperative monitoring during surgery for tethered cord syndrome. J Clin Neurophysiol. 2009;26(2):76–81.

    Article  PubMed  Google Scholar 

  101. Sangtongiaraskul S, Tuchinda L, Lerdsirisopon S, Sae-phua V, Amomfa J, Yuwapattanawong K. Anesthetic regimens for intraoperative bulbocarnosus reflex monitoring in pediatric cord surgery, experiences from the university hospital. Thai J Anesthesiol. 2021;47:187–95.

    Google Scholar 

  102. Morota N. Intraoperative neurophysiological monitoring of the bulbocavernosus reflex during surgery for conus spinal lipoma: what are the warning criteria? J Neurosurg Pediatr. 2019;23(5):1–9.

    Article  Google Scholar 

  103. Rechthand E. Bilateral bulbocavernosus reflexes: crossing of nerve pathways or artifact? Muscle Nerve. 1997;20(5):616–8.

    Article  CAS  PubMed  Google Scholar 

  104. Sala F, Tramontano V, Squintani G, Arcaro C, Tot E, Pinna G, et al. Neurophysiology of complex spinal cord untethering. J Clin Neurophysiol. 2014;31(4):326–36.

    Article  PubMed  Google Scholar 

  105. Deletis V, Vodusek DB, Abbott R, Epstein FJ, Turndorf H. Intraoperative monitoring of the dorsal sacral roots: minimizing the risk of iatrogenic micturition disorders. Neurosurgery. 1992;30(1):72–5.

    Article  CAS  PubMed  Google Scholar 

  106. Huang JC, Deletis V, Vodusek DB, Abbott R. Preservation of pudendal afferents in sacral rhizotomies. Neurosurgery. 1997;41(2):411–5.

    Article  CAS  PubMed  Google Scholar 

  107. Corman ML. Physiologic and anatomical bases of continence. In: Colon and rectal surgery. 3rd ed. Philadelphia, PA: J.B. Lippincott; 1993. p. 193.

    Google Scholar 

  108. Shinjo T, Hayashi H, Takatani T, Boku E, Nakase H, Kawaguchi M. Intraoperative feasibility of bulbocavernosus reflex monitoring during untethering surgery in infants and children. J Clin Monitoring and Computing. 2019;33:155–63.

    Article  Google Scholar 

  109. Skinner SA, Transfeldt EE, Mehbod AA, Mullen JC, Perra JH. Electromyography mechanically-induced suprasegmental spinal motor tract injury: review of decompression at spinal cord level. Clin Neurophysiol. 2009;120:754–64.

    Article  PubMed  Google Scholar 

  110. Kothbauer KF, Novak K. Intraoperative monitoring for tethered cord surgery: an update. Neurosurg Focus. 2004;16(2):E8.

    Article  PubMed  Google Scholar 

  111. Aquilina K, Graham D, Wimalasundera N. Selective dorsal rhizotomy: an old treatment remerging. Arch Dis Child. 2015;100:798–802.

    Article  PubMed  Google Scholar 

  112. Enslin JM, Langerak NG, Fieggen AG. The evolution of selective dorsal rhizotomy for the management of spasticity. Neutotherpeutictics. 2019;16:3–168.

    Article  Google Scholar 

  113. Fasano VA, Broggi G, Barolat-Romana G, Sguazzi A. Surgical treatment of spasticity in cerebral palsy. Childs Brain. 1978;4:289–305.

    CAS  PubMed  Google Scholar 

  114. Fasano VA, Barolat-Romana G, Zeme S, Squazzi A. Electrophysiological assessment of spinal circuits in spasticity by direct nerve root stimulation. Neurosurgery. 1979;4(2):146–51.

    Article  CAS  PubMed  Google Scholar 

  115. Peacock WJ, Arens LJ, Berman B. Cerebral palsy spasticity. Selective posterior rhizotomy. Pediatr Neurosci. 1987;13(2):61–6.

    Article  CAS  PubMed  Google Scholar 

  116. Staudt LA, Nuwer MR, Peacock WJ. Intraoperative monitoring during selective posterior rhizotomy: technique and patient outcome. Electroencephalogr Clin Neurophysiol. 1995;97(6):296–309.

    Article  CAS  PubMed  Google Scholar 

  117. Warsi NM, Tailor J, Coulter IC, Shakil H, Workewych A, et al. Selective dorsal rhizotomy: an illustrated review of operative techniques. J Neurosurg Pediatr. 2020;25:540–7.

    Article  Google Scholar 

  118. Ahluwalia R, Bass P, Flyn L, Martin E, Riordan H, et al. Conus-level combined dorsal and ventral lumbar rhizotomy for treatment of mixed hypertonia: technical note and complications. J Neurosurg Pediatr. 2021;27:102–7.

    Article  Google Scholar 

  119. Zhan Q, Yu X, Jiang W, Shen W, Jiang S, et al. Whether thenewly modified protocol is applicable to guide single-level approach SDR to treat spastic quadriplegia and diplegia in pediatric patients with cerebral palsy? Child’s Nervous. System. 2020;36:1935–43.

    Google Scholar 

  120. Fraioli B, Nucci F, Baldassarre L. Bilateral cervical posterior rhizotomy: effects on dystonia and athetosis, on respiration and other autonomic functions. Appl Neurophysiol. 1977;40(1):24–9.

    Google Scholar 

  121. Duan Y, Luo X, Gao X, Sun C. Cervical selectrivive dorsal rhizotomy for treating spasticity in upper limb neurosurgical way to neurosurgical technique. Interdiscipl Neurosurg. 2015;2:57–60.

    Article  Google Scholar 

  122. Harper CM, Nelson KR. Intraoperative electrophysiological monitoring in children. J Clin Neurophysiol. 1992;9(3):342–56.

    Article  CAS  PubMed  Google Scholar 

  123. Kim DS, Choi JU, Yang KH, Park CI. Selective posterior rhizotomy in children with cerebral palsy: a 10-year experience. Childs Nerv Syst. 2001;17:556–62.

    Article  CAS  PubMed  Google Scholar 

  124. Santos VM, Cameiro VM, Oliveira PNBGC, Caldas CAT, Machado HR. Surgical results of selective dorsal root rhizotomy for the treatment of spastic cerebral palsy. J Pediatr Neuroscience. 2021;16(1):24–9.

    Article  Google Scholar 

  125. Turner RT. Neurophysiological intraoperative monitoring during selective dorsal rhizotomy. J Clin Neurophysiol. 2009;26(2):82–4.

    Article  PubMed  Google Scholar 

  126. Xiao B, Constatntini S, Browd SR, Zhan Q, Jiang W, Mel R. The role of intra-operative neuroelectrophysilogical monitoring in single-level approach selective dorsal rhizotomy. Child’s Nervous System. 2020;36:1925–33.

    Article  Google Scholar 

  127. Steninbok P, Tidemann AJ, Miller S, Mortenson P, Bowen-Roberts T. Electrophysiologically guided versus non-electrophysiologically guided selective dorsal rhizotomy for spastic cerebral palsy: a comparison of outcomes. Childs Nerv Syst. 2009;25:1091–6.

    Article  Google Scholar 

  128. Lang FF, Deletis V, Cohen HW, Velasquez L, Abbott R. Inclusion of the S2 dorsal rootlets in functional posterior rhizotomy for spasticity in children with cerebral palsy. Neurosurgery. 1994;34(5):847–53. discussion 853

    CAS  PubMed  Google Scholar 

  129. Park TS, Gaffney PE, Kaufman BA, Molleston MC. Selective lumbosacral dorsal rhizotomy immediately caudal to the conus medullaris for cerebral palsy. Neurosurgery. 1993;33(5):929–33. discussion 933–4

    CAS  PubMed  Google Scholar 

  130. Phillips JC, Park TS. Electrophysiological studies of selective posterior rhizotomy patients. In: Park TS, Phillips LH, Peacock W, editors. Neurosurgery: state of the art reviews: management of spasticity in cerebral palsy and spinal cord injury. Philadelphia, PA: Hanley& Belfus; 1989. p. 459–69.

    Google Scholar 

  131. Sandrini G, Serrao M, Rossi P, Romanielo A, Cruccu G, Willer JC. The lower limb reflex in humans. Pro Neurobiol. 2005;77(6):353–95.

    Article  Google Scholar 

  132. Shahani BT, Young RR. Human flexor reflexes. J Neurol Neurosurg Psychiat. 1971;34:616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dearderian C, Tadi P. Physiology, withdrawal response. StatPearls; 2021:1–4.

    Google Scholar 

  134. Leppanen R, Maguire J, Wallace S, Madigan R, Draper V. Intraoperative lower extremity reflex muscle activity as an adjunct to conventional somatosensory-evoked potentials and descending neurogenic monitoring in idiopathic scoliosis. Spine. 1995;20:1872–7.

    Article  CAS  PubMed  Google Scholar 

  135. Leppanen R, Maguire J, Wallace S, et al. Intraoperative recording of long-latency lower extremity reflexes for the detection of suprasegmentally altered complex spinal cord electrophysiological processing. Richmond, VA: Southern EEG Society Meeting; 1992.

    Google Scholar 

  136. Maguire J, Wallace S, Madigan R, Leppanen R, Draper V. Intraoperative long-latency reflex activity in idiopathic scoliosis demonstrates abnormal central processing: a possible etiology for idiopathic scoliosis. Spine. 1993;18:1621–6.

    Article  CAS  PubMed  Google Scholar 

  137. Leppanen R. From the electrodiagnostic lab: where intraoperative intralimb and interlimb polysynaptic reflexes identify acute and chronic neurological comprise. Faces of spine care. Spine J. 2006;6:344–7.

    Article  PubMed  Google Scholar 

  138. Slimp JC. Electrophysiological intraoperative monitoring for spine procedures. Phys Med Rehabil Clin N Am. 2004;14:99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leppanen, R. (2023). The Use of Spinal Reflex Responses for IOM. In: Seubert, C.N., Balzer, J.R. (eds) Koht, Sloan, Toleikis's Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-031-09719-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09719-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09718-8

  • Online ISBN: 978-3-031-09719-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics