Skip to main content

New Developments in Targeting Cancer Cachexia

  • Chapter
  • First Online:
The Systemic Effects of Advanced Cancer

Abstract

Within the cancer population, 50–80% of patients will develop cachexia, impacting negatively on their ability to tolerate or gain benefit from either curative or palliative treatment. To date, although collaborative management guidelines have been developed, there are no internationally standardised management programmes used in the clinical forum for patients with cancer cachexia. Furthermore, current available treatment strategies have limited efficacy. This chapter considers recent developments in the ability to target cachexia. Such “targeting” comes in two key forms: firstly, the ability to target and recognise new patients with, or at risk of, developing cancer cachexia. Some of the new developments in this field of study relate not just to improvements in patient targeting, but also a better understanding of the inherent pitfalls in this process. The second aspect of targeting relates to the identification of novel therapeutic biological targets for further clinical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dewys, W.D., Begg, C., Lavin, P.T., Band, P.R., Bennett, J.M., Bertino, J.R., et al.: Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am. J. Med. 69(4), 491–497 (1980)

    Article  CAS  PubMed  Google Scholar 

  2. Wallengren, O., Lundholm, K., Bosaeus, I.: Diagnostic criteria of cancer cachexia: relation to quality of life, exercise capacity and survival in unselected palliative care patients. Support Care Cancer. 21(6), 1569–1577 (2013)

    Article  PubMed  Google Scholar 

  3. Tan, B.H., Fearon, K.C.: Cachexia: prevalence and impact in medicine. Curr. Opin. Clin. Nutr. Metab. Care. 11(4), 400–407 (2008)

    Article  PubMed  Google Scholar 

  4. Fearon, K., Strasser, F., Anker, S.D., Bosaeus, I., Bruera, E., Fainsinger, R.L., et al.: Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12(5), 489–495 (2011)

    Article  PubMed  Google Scholar 

  5. Vagnildhaug, O., Balstad, T., Almberg, S., Bruneli, C., Knudsen, A., Kaasa, S., et al.: A cross-sectional study examining the prevalence of cachexia and areas of unmet need in patients with cancer. Support Care Cancer. 26(6), 1871–1880 (2017)

    Article  PubMed  Google Scholar 

  6. LeBlanc, T., Nipp, R., Rushing, C., Samsa, G., Locke, S., Kamal, A., et al.: Correlation between the international consensus definition of the Cancer Anorexia-Cachexia Syndrome (CACS) and patient-centered outcomes in advanced non-small cell lung cancer. J. Pain Symptom Manag. 49(4), 680–689 (2014)

    Article  Google Scholar 

  7. Blum, D., Stene, G.B., Solheim, T.S., Fayers, P., Hjermstad, M.J., Baracos, V.E., et al.: Validation of the Consensus-Definition for Cancer Cachexia and evaluation of a classification model—a study based on data from an international multicentre project (EPCRC-CSA). Ann. Oncol. 25(8), 1635–1642 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Vanhoutte, G., van de Wiel, M., Wouters, K., Sels, M., Bartolomeeussen, L., Keersmaecker, S.D., et al.: Cachexia in cancer: what is in the definition? BMJ Open Gastroenterol. 3(1), e000097 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Evans, W.J., Morley, J.E., Argilés, J., Bales, C., Baracos, V., Guttridge, D., et al.: Cachexia: a new definition. Clin. Nutr. 27(6), 793–799 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Mourtzakis, M., Prado, C.M.M., Lieffers, J.R., Reiman, T., McCargar, L.J., Baracos, V.E.: A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 33(5), 997–1006 (2008)

    Article  PubMed  Google Scholar 

  11. Martin, L., Birdsell, L., MacDonald, N., Reiman, T., Clandinin, M.T., McCargar, L.J., et al.: Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 31(12), 1539–1547 (2013)

    Article  PubMed  Google Scholar 

  12. Fearon, K.C.H., Von Meyenfeldt, M.F., Moses, A.G.W., Van Geenen, R., Roy, A., Gouma, D.J., et al.: Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut. 52(10), 1479–1486 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., et al.: Sarcopenia: European consensus on definition and diagnosis Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 39(4), 412–423 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  14. von Haehling, S., Ebner, N., dos Santos, M.R., Springer, J., Anker, S.D.: Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat. Rev. Cardiol. 14(6), 323–341 (2017)

    Article  CAS  Google Scholar 

  15. Fearon, K., Evans, W.J., Anker, S.D.: Myopenia—a new universal term for muscle wasting. J. Cachexia. Sarcopenia Muscle. 2(1), 1–3 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Miller, J., Wells, L., Nwulu, U., Currow, D., Johnson, M., Skipworth, R.: Validated screening tools for the assessment of cachexia, sarcopenia, and malnutrition: a systematic review. Am. J. Clin. Nutr. 108(6), 1196–1208 (2018)

    Article  PubMed  Google Scholar 

  17. Arends, J., Baracos, V., Bertz, H., Bozzetti, F., Calder, P., Deutz, N.E.P., et al.: ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. 36(5), 1187–1196 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Baumgartner, R.N., Koehler, K.M., Gallagher, D., Romero, L., Heymsfield, S.B., Ross, R.R., et al.: Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 147(8), 755–763 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. MacDonald, A.J., Greig, C.A., Baracos, V.: The advantages and limitations of cross-sectional body composition analysis. Curr. Opin. Support. Palliat. Care. 5(4), 342–349 (2011)

    Article  PubMed  Google Scholar 

  20. Heymsfield, S.B., Smith, R., Aulet, M., Bensen, B., Lichtman, S., Wang, J., et al.: Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am. J. Clin. Nutr. 52(2), 214–218 (1990)

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen, D.M., El-Serag, H.B.: The epidemiology of obesity. Gastroenterol Clin North Am. 39(1), 1–7 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Flegal, K.M., Carroll, M.D., Kit, B.K., Ogden, C.L.: Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 307(5), 491–497 (2012)

    Article  PubMed  Google Scholar 

  23. Kalantar-Zadeh, K., Horwich, T.B., Oreopoulos, A., Kovesdy, C.P., Younessi, H., Anker, S.D., Morley, J.E.: Risk factor paradox in wasting diseases. Curr Opin Clin Nutr Metab Care. 10(4), 433–442 (2007)

    Article  PubMed  Google Scholar 

  24. Martin, L., Senesse, P., Gioulbasanis, I., Antoun, S., Bozzetti, F., Deans, C., Strasser, F., Thoresen, L., Jagoe, R.T., Chasen, M., Lundholm, K., Bosaeus, I., Fearon, K.H., Baracos, V.E.: Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol. 33(1), 90–99 (2015)

    Article  PubMed  Google Scholar 

  25. Delmonico, M., Harris, T., Visser, M., Park, S., Conroy, M., Velasquez-Mieyer, P., et al.: Health, Aging, and Body: longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 90, 1579–1585 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, Y., Xu, S., Zhang, X., Yi, Z., Cichello, S.: Skeletal intramyocellular lipid metabolism and insulin resistance. Biophys. Rev. 1, 90–98 (2015)

    CAS  Google Scholar 

  27. Gray, C., MacGillivray, T., Eeley, C., Stephens, N., Beggs, I., Fearon, K., et al.: Magnetic resonance imaging with k-means clustering objectively measures whole muscle volume compartments in sarcopenia/cancer cachexia. Clin. Nutr. 30, 106–111 (2011)

    Article  PubMed  Google Scholar 

  28. Stephens, N., Skipworth, R., MacDonald, A., Greig, C., Ross, J., Fearon, K.: Intramyocellular lipid droplets increase with progression of cachexia in cancer patients. J. Cachexia. Sarcopenia Muscle. 2, 111–117 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ramage, M.I., Johns, N., Deans, C.D.A., Ross, J.A., Preston, T., Skipworth, R.J.E., et al.: The relationship between muscle protein content and CT-derived muscle radio-density in patients with upper GI cancer. Clin. Nutr. Edinb. Scotl. (2016 Dec 27)

    Google Scholar 

  30. Ebadi, M., Martin, L., Ghosh, S., Field, C.J., Lehner, R., Baracos, V.E., Mazurak, V.C.: Subcutaneous adiposity is an independent predictor of mortality in cancer patients. Br J Cancer. 117(1), 148–155 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yip, C., Dinkel, C., Mahajan, A., Siddique, M., Cook, G.J.R., Goh, V.: Imaging body composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights Imaging. 6(4), 489–497 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mersmann, F., Bohm, S., Schroll, A., Boeth, H., Duda, G., Arampatzis, A.: Muscle shape consistency and muscle volume prediction of thigh muscles. Scand. J. Med. Sci. Sports. 25(2), e208–e213 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. Willis, T.A., Hollingsworth, K.G., Coombs, A., Sveen, M.L., Andersen, S., Stojkovic, T., et al.: Quantitative muscle MRI as an assessment tool for monitoring disease progression in LGMD2I: a multicentre longitudinal study. PLoS One [Internet]. (2013 Aug 14) [cited 2016 May 18];8(8). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743890/

  34. Karlsson, A., Rosander, J., Romu, T., Tallberg, J., Grönqvist, A., Borga, M., et al.: Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water–fat MRI. J. Magn. Reson. Imaging. 41(6), 1558–1569 (2015)

    Article  PubMed  Google Scholar 

  35. Rollins, K.E., Tewari, N., Ackner, A., Awwad, A., Madhusudan, S., Macdonald, I.A., et al.: The impact of sarcopenia and myosteatosis on outcomes of unresectable pancreatic cancer or distal cholangiocarcinoma. Clin. Nutr. Edinb. Scotl. 35(5), 1103–1109 (2016)

    Article  Google Scholar 

  36. Weber, M., Krakowski-Roosen, H., Schroder, L., Kinscherf, R., Krix, M., Kopp-Schneider, A., et al.: Morphology, metabolism, microcirculation, and strength of skeletal muscles in cancer-related cachexia. Acta Oncol. 48(1), 116–124 (2009)

    Article  PubMed  Google Scholar 

  37. Krix, M., Krakowski-Roosen, H., Huttner, H., Delorme, S., Kauczor, H., Hildebrandt, W.: Assessment of skeletal muscle perfusion using contrast-enhanced ultrasonography. J. Ultrasound Med. 24(4), 431–441 (2005)

    Article  PubMed  Google Scholar 

  38. Sabatino, A., Regolistil, G., Bozzoli, L., Fani, F., Antoniotti, R., Maggiore, U., et al.: Reliability of bedside ultrasound for measurement of quadriceps muscle thickness in critically ill patients with acute kidney injury. Clin. Nutr. 36(6), 1710–1715 (2017)

    Article  PubMed  Google Scholar 

  39. Puthucheary, Z., Phadke, R., Rawal, J., McPhail, M., Sidhu, P., Rowlerson, A., et al.: Qualitative ultrasound in acute critical illness muscle wasting. Crit. Care Med. 43(8), 1603–1611 (2015)

    Article  PubMed  Google Scholar 

  40. Stephens, N.A., Gray, C., MacDonald, A.J., Tan, B.H., Gallagher, I.J., Skipworth, R.J.E., et al.: Sexual dimorphism modulates the impact of cancer cachexia on lower limb muscle mass and function. Clin. Nutr. 31(4), 499–505 (2012)

    Article  PubMed  Google Scholar 

  41. Skipworth, R.J.E., Moses, A., Sangster, K., Sturgeon, C., Voss, A., Fallon, M., et al.: Interaction of gonadal status with systemic inflammation and opioid use in determining nutritional status and prognosis in advanced pancreatic cancer. Support Care Cancer. 19(3), 391–401 (2011)

    Article  PubMed  Google Scholar 

  42. Stretch, C., Wang, K., Rejtar, T., Reinker, S., Brachat, S., Badur, R., et al.: Sexual dimorphism in the skeletal muscle transcriptome and urinary proteome indicate sex specific pathways involved in regulation of muscularity in cancer patients. J. Cachexia. Sarcopenia Muscle. 9(1), 183–212 (2018)

    Google Scholar 

  43. Tisdale, M.J.: Mechanisms of cancer cachexia. Physiol. Rev. 89(2), 381–410 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. Johns, N., Stretch, C., Tan, B.H.L., Solheim, T.S., Sørhaug, S., Stephens, N.A., et al.: New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. J Cachexia Sarcopenia Muscle. (2016 Jan 1);n/a–n/a

    Google Scholar 

  45. Deans, C., Rose-Zerilli, M., Wigmore, S., Ross, J., Howell, M., Jackson, A., et al.: Host cytokine genotype is related to adverse prognosis and systemic inflammation in gastro-oesophageal cancer. Ann. Surg. Oncol. 14(2), 329–339 (2007)

    Article  PubMed  Google Scholar 

  46. Barber, M., Powell, J., Lynch, S., Fearon, K., Ross, J.: A polymorphism of the interleukin-1 beta gene influences survival in pancreatic cancer. Br. J. Cancer. 83, 1443–1447 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barber, M., Powell, J., Lynch, S., Gough, N., Fearon, K., Ross, J.: Two polymorphisms of the tumour necrosis factor gene do not influence survival in pancreatic cancer. Clin. Exp. Immunol. 117, 425–429 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mueller, T., Burmeister, M., Bachmann, J., Martignoni, M.: Cachexia and pancreatic cancer: are there treatment options? World J. Gastroenterol. 20(28), 9361–9373 (2014)

    PubMed  PubMed Central  Google Scholar 

  49. Vazeille, C., Jouinot, A., Durand, J., Neveux, N., Boudou-Rouquette, P., Huillard, O., et al.: Relation between hypermetabolism, cachexia and survival in cancer patients: a prospective study in 390 cancer patients before initiation of anticancer therapy. Am. J. Clin. Nutr. 105(5), 1139–1147 (2017)

    Article  CAS  PubMed  Google Scholar 

  50. van Dijk, D., Horstman, A., Smeets, J., den Dulk, M., Grabsch, H., Dejong, C., et al.: Tumour-specific and organ-specific protein synthesis rates in patients with pancreatic cancer. J. Cachexia. Sarcopenia Muscle. 10(3) (2019)

    Google Scholar 

  51. van Dijk, D.P., van de Poll, M.C., Moses, A.G., Preston, T., Olde Damink, S.W., Rensen, S.S., et al.: Effects of oral meal feeding on whole body protein breakdown and protein synthesis in cachectic pancreatic cancer patients. J. Cachexia. Sarcopenia Muscle. 6(3), 212–221 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deutz, N.E.P., Safar, A., Schutzler, S., Memelink, R., Ferrando, A., Spencer, H., et al.: Muscle protein synthesis in cancer patients can be stimulated with a specially formulated medical food. Clin. Nutr. Edinb. Scotl. 30(6), 759–768 (2011)

    Article  CAS  Google Scholar 

  53. MacDonald, A.J., Small, A.C., Greig, C.A., Husi, H., Ross, J.A., Stephens, N.A., et al.: A novel oral tracer procedure for measurement of habitual myofibrillar protein synthesis. Rapid. Commun. Mass Spectrom. RCM. 27(15), 1769–1777 (2013)

    Article  CAS  PubMed  Google Scholar 

  54. MacDonald, A.J., Johns, N., Stephens, N., Greig, C., Ross, J.A., Small, A.C., et al.: Habitual myofibrillar protein synthesis is normal in patients with upper GI cancer cachexia. Am. Assoc. Cancer Res. 21(7), 1734–1740 (2015)

    CAS  Google Scholar 

  55. Sandri, M.: Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 45(10) (2013)

    Google Scholar 

  56. Penna, F., Baccino, F., Costelli, P.: Coming back: autophagy in cachexia. Curr. Opin. Clin. Nutr. Metab. Care. 17(3), 241–246 (2014)

    Article  PubMed  Google Scholar 

  57. Ryter, S., Mizumura, K., Choi, A.: The impact of autophagy on cell death modalities. Int. J. Cell Biol. (2014)

    Google Scholar 

  58. Pettersen, K., Andersen, S., Degen, S., Tadini, V., Grosjean, J., Hatakeyama, S., et al.: Cancer cachexia associates with a systemic autophagy-inducing activity mimicked by cancer cell-derived IL-6 trans-signalling. Sci. Rep. 7, 2046 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Johns, N., Hatakeyama, S., Stephens, N.A., Degen, M., Degen, S., Frieauff, W., et al.: Clinical classification of cancer cachexia: phenotypic correlates in human skeletal muscle. PLoS One. 9(1), e83618 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Boehm, I., Miller, J., Wishart, T., Wigmore, S., Skipworth, R., Jones, R., et al.: Neuromuscular junctions are stable in patients with cancer cachexia. J. Clin. Invest. (2019)

    Google Scholar 

  61. Ebadi, M., Mazurak, V.C.: Evidence and mechanisms of fat depletion in cancer. Nutrients. 6(11), 5280–5297 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ryden, M., Agustsson, T., Laurencikiene, J., Britton, T., Sjolin, E., Isaksson, B., et al.: Lipolysis; not inflammation, cell death, or lipogenesis is involved in adipose tissue loss in cancer cachexia. Cancer. 113(7), 1695–1704 (2008)

    Article  PubMed  Google Scholar 

  63. Mracek, T., Stephens, N.A., Gao, D., Bao, Y., Ross, J.A., Rydén, M., et al.: Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. Br. J. Cancer. 104(3), 441–447 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ebadi, M., Baracos, V., Bathe, O., Robinson, L., Mazurak, V.: Loss of visceral adipose tissue precedes subcutaneous adipose tissue and associates with N-6 fatty acid content. Clin. Nutr. 35(6), 1347–1353 (2016)

    Article  CAS  PubMed  Google Scholar 

  65. Modesitt, S.C., Hsu, J.Y., Chowbina, S.R., Lawrence, R.T., Hoehn, K.L.: Not all fat is equal: differential gene expression and potential therapeutic targets in subcutaneous adipose, visceral adipose, and endometrium of obese women with and without endometrial cancer. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 22(5), 732–741 (2012)

    Article  Google Scholar 

  66. Das, S.K., Eder, S., Schauer, S., Diwoky, C., Temmel, H., Guertl, B., et al.: Adipose triglyceride lipase contributes to cancer-associated cachexia. Science. 333(6039), 233–238 (2011)

    Article  CAS  PubMed  Google Scholar 

  67. Kir, S., White, J.P., Kleiner, S., Kazak, L., Cohen, P., Baracos, V.E., et al.: Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 513(7516), 100–104 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Deans, C., Wigmore, S., Paterson-Brown, S., Black, J., Ross, J., Fearon, K.C.H.: Serum parathyroid hormone-related peptide is associated with systemic inflammation and adverse prognosis in gastroesophageal carcinoma. Cancer. 103(9), 1810–1818 (2005)

    Article  CAS  PubMed  Google Scholar 

  69. Kir, S., Komaba, H., Garcia, A.P., Economopoulos, K.P., Liu, W., Lanske, B., et al.: PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 23(2), 315–323 (2016)

    Article  CAS  PubMed  Google Scholar 

  70. Chicheportiche, Y., Bourdon, P.R., Xu, H., Hsu, Y.M., Scott, H., Hession, C., et al.: TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J. Biol. Chem. 272(51), 32401–32410 (1997)

    Article  CAS  PubMed  Google Scholar 

  71. Dogra, C., Changotra, H., Wedhas, N., Qin, X., Wergedal, J.E., Kumar, A.: TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J. 21(8), 1857–1869 (2007)

    Article  CAS  PubMed  Google Scholar 

  72. Wiley, S.R., Cassiano, L., Lofton, T., Davis-Smith, T., Winkles, J.A., Lindner, V., et al.: A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity. 15(5), 837–846 (2001)

    Article  CAS  PubMed  Google Scholar 

  73. Feng, S.L.Y., Guo, Y., Factor, V.M., Thorgeirsson, S.S., Bell, D.W., Testa, J.R., et al.: The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. Am. J. Pathol. 156(4), 1253–1261 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Winkles, J.A.: The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting. Nat. Rev. Drug Discov. 7(5), 411–425 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Raue, U., Jemiolo, B., Yang, Y., Trappe, S.: TWEAK-Fn14 pathway activation after exercise in human skeletal muscle: insights from two exercise modes and a time course investigation. J. Appl. Physiol. 118(5), 569–578 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. Bhatnagar, S., Mittal, A., Gupta, S.K., Kumar, A.: TWEAK causes myotube atrophy through coordinated activation of ubiquitin-proteasome system, autophagy, and caspases. J. Cell. Physiol. 227(3), 1042–1051 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Johnston, A.J., Murphy, K.T., Jenkinson, L., Laine, D., Emmrich, K., Faou, P., et al.: Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival. Cell. 162(6), 1365–1378 (2015)

    Article  CAS  PubMed  Google Scholar 

  78. Wang, G., Biswas, A., Ma, W., Kandpal, M., Cocker, C., Grandgenett, P., et al.: Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat. Med. 24, 770–781 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shakri, A., Zhong, T., Ma, W., Coker, C., Kim, S., Calluori, S., et al.: Upregulation of ZIP14 and altered zinc homeostasis in muscles in pancreatic cancer cachexia. Cancers. 18(12), 3 (2019)

    Article  CAS  Google Scholar 

  80. Tsai, V., Husaini, Y., Sainsbury, A., Brown, D., Breit, S.: The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 28, 353–368 (2018)

    Article  CAS  PubMed  Google Scholar 

  81. Sadasivan, S., Chen, Y., Gupta, N., Taneja, K., Maresh, S., Gonzalez, A., et al.: The role of GDF15 (growth/differentiation factor 15) during prostate carcinogenesis. Cancer Res. 78, 421 (2018)

    Article  Google Scholar 

  82. Borner, T., Shaulson, E., Ghidewon, M., Barnett, A., Horn, C., Doyle, R., et al.: GDF15 induces anorexia through nausea and emesis. Cell Metab. 31(2), 351–362 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pirruccello-Straub, M., Jackson, J., Wawersik, S., Webster, T., Salta, L., Long, K., et al.: Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci. Rep. 8, 2292 (2018)

    Google Scholar 

  84. Chen, J., Walton, K., Hagg, A., Colgan, T.: Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. PNAS. 114(26), 5266–5275 (2017)

    Article  CAS  Google Scholar 

  85. Ding, H., Zhang, G., Sin, K., Liu, Z.: Activin A induces skeletal muscle catabolism via p38 mitogen activated protein kinase. J. Cachexia. Sarcopenia Muscle. 8(2), 202–212 (2017)

    Article  PubMed  Google Scholar 

  86. Morvan, F., Rondeau, J., Zou, C., Minetti, G.: Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Proc. Natl. Acad. Sci. USA. 114(47), 12448–12453 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Golan, T., Geva, R., Richards, D., Madhusudan, S.: LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomized, phase 2 trial. J. Cachexia. Sarcopenia Muscle. 9(5), 871–879 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  88. Becker, C., Lord, S., Studenski, S., Warden, S.: Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol. 3(12), 948–957 (2015)

    Article  CAS  PubMed  Google Scholar 

  89. Brink, M., Wellen, J., Delafontaine, P.: Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J. Clin. Invest. 97(11), 2509–2516 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Adigun, A.Q., Ajayi, A.A.: The effects of enalapril-digoxin-diuretic combination therapy on nutritional and anthropometric indices in chronic congestive heart failure: preliminary findings in cardiac cachexia. Eur. J. Heart Fail. 3(3), 359–363 (2001)

    Article  CAS  PubMed  Google Scholar 

  91. Russell, S.T., Sanders, P.M., Tisdale, M.J.: Angiotensin II directly inhibits protein synthesis in murine myotubes. Cancer Lett. 231(2), 290–294 (2006)

    Article  CAS  PubMed  Google Scholar 

  92. Sanders, P.M., Russell, S.T., Tisdale, M.J.: Angiotensin II directly induces muscle protein catabolism through the ubiquitin–proteasome proteolytic pathway and may play a role in cancer cachexia. Br. J. Cancer. 93(4), 425–434 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yoshida, T., Tabony, A.M., Galvez, S., Mitch, W.E., Higashi, Y., Sukhanov, S., et al.: Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int. J. Biochem. Cell Biol. 45(10), 2322–2332 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Penafuerte, C.A., Gagnon, B., Sirois, J., Murphy, J., MacDonald, N., Tremblay, M.L.: Identification of neutrophil-derived proteases and angiotensin II as biomarkers of cancer cachexia. Br. J. Cancer. 114(6), 680–687 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Anker, S.D., Negassa, A., Coats, A.J., Afzal, R., Poole-Wilson, P.A., Cohn, J.N., et al.: Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 361(9363), 1077–1083 (2003)

    Article  CAS  PubMed  Google Scholar 

  96. Marinho, R., Alcantara, P., Ottoch, J., Seelaender, M.: Role of exosomal Micro-RNAs and myomiRs in the development of cancer cachexia-associated muscle wasting. Front. Nutr. 4, 69 (2017)

    Article  PubMed  CAS  Google Scholar 

  97. Miller, J.: Characterisation and mechanisms of altered body composition and tissue wasting in cancer cachexia. University of Edinburgh (2020)

    Google Scholar 

  98. Anindo, M., Yaqinuddin, A.: Insights into the potential use of microRNAs as biomarker in cancer. Int. J. Surg. 10(9), 443–449 (2012)

    Article  PubMed  Google Scholar 

  99. Lan, H., Lu, H., Wang, X., Jin, H.: MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed. Res. Int. 125094

    Google Scholar 

  100. Narasimhan, A., Ghosh, S., Stretch, C., Greiner, R., Bathe, O., Baracos, V., et al.: Small RNAome profiling from human skeletal muscle: novel miRNAs and their targets associated with cancer cachexia. J. Cachexia. Sarcopenia Muscle. 8(3), 405–416 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  101. He, W., Calore, F., Londhe, P., Canella, A., Guttridge, D., Croce, C.: Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc. Natl. Acad. Sci. USA. 111(12), 4525–4529 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. White, J.: IL-6, cancer and cachexia: metabolic dysfunction creates the perfect storm. Transl Cancer Res. 6(2), 280–285 (2017)

    Article  CAS  Google Scholar 

  103. Yoshikwa, T., Takano, M., Kouta, H., Horikoshi, M., Asakawa, T., Kudoh, K.: Can serum IL-6 be a sentinel biomarker for cancer cachexia in gynaecologic cancer patients? Gynaecol. Cancer. 36(15_suppl), e17544–e17544 (2018)

    Google Scholar 

  104. Miller, A., McLeod, L., Alhayyani, S., Szczepny, A., Watkins, D., Chen, W., et al.: Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma. Oncogene. 36(21), 3059–66 (2017)

    Google Scholar 

  105. Ramsey, M., Talbert, E., Ahn, D., Bekaii-Saab, T., Badi, N., Bloomston, P., et al.: Circulating interleukin-6 is associated with disease progression, but not cachexia in pancreatic cancer. Pancreatology. 19(1), 80–87 (2019)

    Article  CAS  PubMed  Google Scholar 

  106. Bayliss, T., Smith, J., Schuster, M., Dragnev, K., Rigas, J.: A humanized anti-IL-6 antibody (ALD518) in non-small cell lung cancer. Expert. Opin. Biol. Ther. 11(12), 1663–1668 (2011)

    Article  CAS  PubMed  Google Scholar 

  107. Tournadre, A., Pereira, B., Dutheil, F., Giraud, C., Courteix, D., Sapin, V., et al.: Changes in body composition and metabolic profile during interleukin 6 inhibition in rheumatoid arthritis. J. Cachexia. Sarcopenia Muscle. 8, 639–646 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  108. Callaway, C., Delitto, A., D’Lugos, A., Patel, R., Nosacka, R., Delitto, D., et al.: IL-8 released from human pancreatic cancer and tumor-associated stromal cells signals through a CXCR2-ERK1/2 axis to induce muscle atrophy. Cancers. 11(12), 1863 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  109. Antunes, J., Ferreira, R., Moreira-Goncalves, D.: Exercise training as therapy for cancer-induced cardiac cachexia. Trends Mol. Med. 24(8), 709–727 (2018)

    Article  CAS  PubMed  Google Scholar 

  110. Hall, D., Griss, T., Ma, J., Sanchez, B., Sadek, J., Tremblay, A., et al.: The AMPK agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), but not metformin, prevents inflammation-associated cachectic muscle wasting. EMBO Mol. Med. 10(7), e8307 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. VanderVeen, B., Fix, D., Carson, J.: Disrupted skeletal muscle mitochondrial dynamics, mitophagy and biogenesis during cancer cachexia: a role for inflammation. Oxidative Med. Cell. Longev. 2017;Article ID 3292087

    Google Scholar 

  112. Miller, J., Skipworth, R.: Novel molecular targets of muscle wasting in cancer patients. Curr. Opin. Clin. Nutr. Metab. Care. 22(3), 196–204 (2019)

    Article  CAS  PubMed  Google Scholar 

  113. Brzeszczynska, J., Johns, N., Schlib, A., Degen, S., Langen, R., Schols, A., et al.: Loss of oxidative defense and potential blockade of satellite cell maturation in the skeletal muscle of patients with cancer but not in the healthy elderly. Aging. 8(8), 1690–1702 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Temel, J.S., Abernethy, A.P., Currow, D.C., Friend, J., Duus, E.M., Yan, Y., et al.: Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 17(4), 519–531 (2016)

    Article  CAS  PubMed  Google Scholar 

  115. Currow, D., Temel, J.S., Abernethy, A., Milanowski, J., Friend, J., Fearon, K.C.: ROMANA 3: a phase 3 safety extension study of anamorelin in advanced non-small-cell lung cancer (NSCLC) patients with cachexia. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 28(8), 1949–1956 (2017)

    Article  CAS  Google Scholar 

  116. Crawford, J., Johnston, M.A., Taylor, R.P., Dalton, J.T., Steiner, M.S.: Enobosarm and lean body mass in patients with non-small cell lung cancer. J. Clin. Oncol. [Internet]. (2014) [cited 2017 May 15];32, 5s(suppl; abstr 9618). Available from: http://meetinglibrary.asco.org/content/128938-144

  117. ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 – Identifier NCT02330926 Multimodal Intervention for Cachexia in Advanced Cancer Patients Undergoing Chemotherapy – 05-Jan-2015, Cited 04-Sept-2016 [Internet]. ClinicalTrials.gov. 2015 [cited 2016 Sep 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT02330926

  118. Solheim, T.S., Laird, B.J.A., Balstad, T.R., Stene, G.B., Bye, A., Johns, N., et al.: A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. J. Cachexia. Sarcopenia Muscle. (2017) Jun 14

    Google Scholar 

  119. Evans, W.J., Hellerstein, M., Orwoll, E., Cummings, S., Cawthon, P.M.: D3-Creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. J. Cachexia. Sarcopenia Muscle. 10(1), 14–21 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  120. Costa, R., Caro, P., de Matos-Neto, E., Lima, J., Radloff, K., Alves, M., et al.: Cancer cachexia induces morphological and inflammatory changes in the intestinal mucosa. J. Cachexia. Sarcopenia Muscle. 10(5), 1116–1127 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  121. Morrison, D., Preston, T.: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 7, 189–200 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  122. Miller, J., Laird, B., Skipworth, R.: The immunological regulation of cancer cachexia and its therapeutic implications. J. Cancer Metastasis Treat. 5, 68 (2019)

    CAS  Google Scholar 

  123. Roberts, E., Deonarine, A., Jones, J., Denton, A., Feig, C., Lyons, S., et al.: Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 3(210), 1137–1157 (2013)

    Article  CAS  Google Scholar 

  124. Zhang, G., Liu, Z., Ding, H., Zhou, Y., Doan, H., Sin, K., et al.: Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat. Commun. 8(589) (2017)

    Google Scholar 

  125. Burfeind, K., Zhu, X., Levasseur, P., Michaelis, K., Norgard, M., Marks, D.: TRIF is a key inflammatory mediator of acute sickness behavior and cancer cachexia. Brain Behav. Immun. 73, 364–374 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. E. Skipworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, J., Ramage, M.I., Skipworth, R.J.E. (2022). New Developments in Targeting Cancer Cachexia. In: Acharyya, S. (eds) The Systemic Effects of Advanced Cancer. Springer, Cham. https://doi.org/10.1007/978-3-031-09518-4_10

Download citation

Publish with us

Policies and ethics