Skip to main content

Opportunities and Challenges for Deep Learning in Brain Lesions

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12962))

Included in the following conference series:

  • 5689 Accesses

Abstract

In recent years, deep learning techniques have shown potential for incorporation in many facets of the medical imaging pipeline, from image acquisition/reconstruction to segmentation/classification to outcome prediction. Specifically, these models can help improve the efficiency and accuracy of image interpretation and quantification. However, it is important to note the challenges of working with medical imaging data, and how this can affect the effectiveness of the algorithms when deployed. In this review, we first present an overview of the medical imaging pipeline and some of the areas where deep learning has been used to improve upon the current standard of care for brain lesions. We conclude with a section on some of the current challenges and hurdles facing neuroimaging researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abou-El-Ardat, K., et al.: Comprehensive molecular characterization of multifocal glioblastoma proves its monoclonal origin and reveals novel insights into clonal evolution and heterogeneity of glioblastomas. Neuro Oncol. 19(4), 546–557 (2017)

    Article  Google Scholar 

  2. Akkus, Z., et al.: Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J. Digit. Imaging 30(4), 469–476 (2017). https://doi.org/10.1007/s10278-017-9984-3, https://pubmed.ncbi.nlm.nih.gov/28600641, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537096/

  3. AlBadawy, E.A., Saha, A., Mazurowski, M.A.: Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing. Med. Phys. 45(3), 1150–1158 (2018)

    Article  Google Scholar 

  4. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  5. Baid, U., et al.: Overall survival prediction in glioblastoma with radiomic features using machine learning. Front. Comput. Neurosci. 14, 61 (2020). https://doi.org/10.3389/FNCOM.2020.00061/BIBTEX

    Article  Google Scholar 

  6. Bakas, S., et al.: Segmentation labels for the pre-operative scans of the TCGA-GBM collection (2017)

    Google Scholar 

  7. Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)

    Google Scholar 

  8. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  9. Beers, A., et al.: DeepNeuro: an open-source deep learning toolbox for neuroimaging. Neuroinformatics 19(1), 127–140 (2021)

    Article  Google Scholar 

  10. Bø, H.K., Solheim, O., Jakola, A.S., Kvistad, K.A., Reinertsen, I., Berntsen, E.M.: Intra-rater variability in low-grade glioma segmentation. J. Neuro-oncol. 131(2), 393–402 (2017)

    Article  Google Scholar 

  11. Bousabarah, K., et al.: Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data. Radiat. Oncol. 15(1) (2020). https://doi.org/10.1186/s13014-020-01514-6

  12. Chang, K., et al.: Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin. Cancer Res. 24(5), 1073–1081 (2018). https://doi.org/10.1158/1078-0432.CCR-17-2236, https://clincancerres.aacrjournals.org/content/24/5/1073

  13. Chang, K., et al.: Distributed deep learning networks among institutions for medical imaging. J. Am. Med. Inform. Assoc. 25(8), 945–954 (2018)

    Article  Google Scholar 

  14. Chang, K., et al.: Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-oncology 21(11), 1412–1422 (2019). https://doi.org/10.1093/neuonc/noz106

  15. Chang, K., et al.: Multi-institutional assessment and crowdsourcing evaluation of deep learning for automated classification of breast density. J. Am. Coll. Radiol. 17(12), 1653–1662 (2020)

    Article  Google Scholar 

  16. Chang, P., et al.: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. Am. J. Neuroradiol. 39, 1201–1207 (2018). https://doi.org/10.3174/ajnr.A5667, http://www.ajnr.org/content/early/2018/05/10/ajnr.A5667

  17. Deeley, M., et al.: Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study. Phys. Med. Biol. 56(14), 4557 (2011)

    Article  Google Scholar 

  18. Finlayson, S.G., et al.: The clinician and dataset shift in artificial intelligence. N. Engl. J. Med. 385(3), 283 (2021)

    Article  Google Scholar 

  19. Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Programs Biomed. 158, 113–122 (2018)

    Article  Google Scholar 

  20. Haibe-Kains, B., et al.: Transparency and reproducibility in artificial intelligence. Nature 586(7829), E14–E16 (2020)

    Article  Google Scholar 

  21. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018). https://doi.org/10.1002/mrm.26977

    Article  Google Scholar 

  22. Han, W., et al.: Deep transfer learning and radiomics feature prediction of survival of patients with high-grade gliomas. Am. J. Neuroradiol. 41(1), 40–48 (2020). https://doi.org/10.3174/AJNR.A6365, http://www.ajnr.org/content/41/1/40, http://www.ajnr.org/content/41/1/40.abstract

  23. Hegi, M.E., et al.: MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352(10), 997–1003 (2005). https://doi.org/10.1056/NEJMOA043331/SUPPL_FILE/997SA1.PDF, https://www.nejm.org/doi/full/10.1056/nejmoa043331

  24. Hoebel, K., et al.: An exploration of uncertainty information for segmentation quality assessment. In: Medical Imaging 2020: Image Processing, vol. 11313, p. 113131K. International Society for Optics and Photonics (2020)

    Google Scholar 

  25. Isensee, F., Jaeger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation (2020)

    Google Scholar 

  26. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  27. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  28. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  29. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  30. Korfiatis, P., Kline, T.L., Lachance, D.H., Parney, I.F., Buckner, J.C., Erickson, B.J.: Residual deep convolutional neural network predicts MGMT methylation status. J. Digit. Imaging 30(5), 622–628 (2017). https://doi.org/10.1007/s10278-017-0009-z

    Article  Google Scholar 

  31. Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int. J. Radiat. Oncol. Biol. Phys. 59(1), 300–312 (2004). https://doi.org/10.1016/j.ijrobp.2004.01.026

    Article  Google Scholar 

  32. Mehta, R., et al.: Qu-BraTS: MICCAI BraTS 2020 challenge on quantifying uncertainty in brain tumor segmentation-analysis of ranking metrics and benchmarking results. arXiv preprint arXiv:2112.10074 (2021)

  33. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  34. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  35. Mongan, J., Moy, L., Kahn, C.E., Jr.: Checklist for artificial intelligence in medical imaging (claim): a guide for authors and reviewers. Radiol. Artif. Intell. 2(2), e20029 (2020)

    Google Scholar 

  36. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization (2018)

    Google Scholar 

  37. Parker, N.R., et al.: Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci. Rep. 6(1), 1–10 (2016)

    Article  Google Scholar 

  38. Parker, N.R., Khong, P., Parkinson, J.F., Howell, V.M., Wheeler, H.R.: Molecular heterogeneity in glioblastoma: potential clinical implications. Front. Oncol. 5, 55 (2015)

    Google Scholar 

  39. Peacock, J., Peacock, P.: Oxford Handbook of Medical Statistics. Oxford University Press, New York (2010) https://doi.org/10.1093/MED/9780199551286.001.0001

  40. Peng, J., et al.: Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors. Neuro Oncol. 24(2), 289–299 (2022)

    Article  Google Scholar 

  41. Pfisterer, W.K., et al.: Diagnostic and prognostic significance of genetic regional heterogeneity in meningiomas. Neuro Oncol. 6(4), 290–299 (2004)

    Article  Google Scholar 

  42. Pianykh, O.S., et al.: Continuous learning AI in radiology: implementation principles and early applications. Radiology 297(1), 6–14 (2020)

    Article  Google Scholar 

  43. Porter, K.R., McCarthy, B.J., Freels, S., Kim, Y., Davis, F.G.: Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology. Neuro-oncology 12(6), 520–527 (2010). https://doi.org/10.1093/neuonc/nop066

  44. Rauschecker, A.M., et al.: Interinstitutional portability of a deep learning brain MRI lesion segmentation algorithm. Radiol. Artif. Intell. 4(1), e200152 (2021)

    Article  Google Scholar 

  45. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)

    Article  Google Scholar 

  46. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. CoRR abs/1505.0 (2015) http://arxiv.org/abs/1505.04597

  47. Rudie, J.D., et al.: Three-dimensional U-Net convolutional neural network for detection and segmentation of intracranial metastases. Radiol. Artif. Intell. 3(3), e200204 (2021). https://doi.org/10.1148/ryai.2021200204

  48. Tabouret, E., Chinot, O., Metellus, P., Tallet, A., Viens, P., Goncalves, A.: Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 32(11), 4655–4662 (2012). https://ar.iiarjournals.org/content/32/11/4655

    Google Scholar 

  49. Wen, P.Y., et al.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010)

    Article  Google Scholar 

  50. Wenger, A., Ferreyra Vega, S., Kling, T., Bontell, T.O., Jakola, A.S., Carén, H.: Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification. Neuro Oncol. 21(5), 616–627 (2019)

    Article  Google Scholar 

  51. Yan, W., et al.: MRI manufacturer shift and adaptation: increasing the generalizability of deep learning segmentation for MR images acquired with different scanners. Radiol. Artif. Intell. 2(4), e190195 (2020)

    Article  Google Scholar 

  52. Zhao, Y.-X., Zhang, Y.-M., Liu, C.-L.: Bag of tricks for 3D MRI brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 210–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_20

    Chapter  Google Scholar 

  53. Zhou, Z., et al.: MetNet: computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging. Radiother. Oncol. 153, 189–196 (2020). Physics Special Issue: ESTRO Physics Research Workshops on Science in Development, https://doi.org/10.1016/j.radonc.2020.09.016, https://www.sciencedirect.com/science/article/pii/S016781402030788X

  54. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018). https://doi.org/10.1038/nature25988

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashree Kalpathy-Cramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, J., Chang, K., Ahmed, S.R., Jang, I., Kalpathy-Cramer, J. (2022). Opportunities and Challenges for Deep Learning in Brain Lesions. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics