Skip to main content

A Lifecycle Framework for Industrial Decarbonization

  • Conference paper
  • First Online:
Proceedings of the American Solar Energy Society National Conference (ASES SOLAR 2022)

Abstract

A lifecycle framework has been developed to categorize needs and opportunities for industrial decarbonization. The framework includes the following four categories: (1) carbon-free feedstocks and chemical processes, (2) fossil-free heating and electrification, (3) novel greenhouse-gas sequestration, and (4) recycling, repurposing, and recovery. Energy efficient processes underlies each of these four areas. This paper provides a summary of gaps, challenges, and research opportunities for industrial decarbonization in each of these categories, along with a discussion of technoeconomic analyses that can be used to help prioritize activities and potential impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Epp, B., Oropeza, M.: Solar Heat for Industry (2017)

    Google Scholar 

  2. Worrell, E., Price, L., Martin, N., Hendriks, C., Meida, L.O.: Carbon dioxide emissions from the global cement industry. Ann. Rev. Energy Environ. 26(1), 303–329 (2001)

    Article  Google Scholar 

  3. Andrew, R.M.: Global CO2 emissions from cement production. Earth Syst. Sci. Data 10(1), 195–217 (2018)

    Article  Google Scholar 

  4. Hanein, T., et al.: Pyro processing cement kiln bypass dust: enhancing clinker phase formation. Constr. Build. Mater. 259, 120420 (2020)

    Article  Google Scholar 

  5. Bataille, C.: Low and zero emissions in the steel and cement industries (2020)

    Google Scholar 

  6. U.S. Environmental Protection Agency. Sources of Greenhouse Gas Emissions (2022). https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

  7. Rigali, M., Brady, P., Phillips, M., Burton, P.: Progress Report on DPC Cement Filler Development (2021)

    Google Scholar 

  8. Cuesta, A., Ayuela, A., Aranda, M.A.G.: Belite cements and their activation. Cement Concrete Res. 140, 106319 (2021)

    Article  Google Scholar 

  9. Siegel, N.P., Miller, J.E., Ermanoski, I., Diver, R.B., Stechel, E.B.: Factors affecting the efficiency of solar driven metal oxide thermochemical cycles. Ind. Eng. Chem. Res. 52(9), 3276–3286 (2013)

    Article  Google Scholar 

  10. Ermanoski, I., Siegel, N.P., Stechel, E.B.: A new reactor concept for efficient solar-thermochemical fuel production. J. Sol. Energy Eng. ASME 135(3) (2013)

    Google Scholar 

  11. Ambrosini, A., Coker, E.N., McDaniel, A., Arfin, D., Allendorf, M.D., Miller, J.E.: Synthesis and characterization of doped ceria for thermochemical H2O- and CO2-splitting using concentrated solar energy. Abstr. Pap. Am. Chem. Soc. 245 (2013)

    Google Scholar 

  12. Miller, J.E., et al.: Sunshine to petrol: solar thermochemistry for liquid fuels. Abstr. Pap. Am. Chem. Soc. 241 (2011)

    Google Scholar 

  13. Steinfeld, A., Weimer, A.W.: Thermochemical production of fuels with concentrated solar energy. Opt. Express 18(9), A100–A111 (2010)

    Article  Google Scholar 

  14. R. F. Service: Sunlight in your tank. Science 326(5959), 1472–1475 (2009)

    Article  Google Scholar 

  15. Smestad, G.P., Steinfeld, A.: Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind. Eng. Chem. Res. 51(37), 11828–11840 (2012)

    Article  Google Scholar 

  16. Ghavam, S., Vahdati, M., Wilson, I.A.G., Styring, P.: Sustainable ammonia production processes. Front. Energy Res. 9, 34 (2021)

    Google Scholar 

  17. Häberle, A.: In: Lovegrove, K., Stein, W. (eds.) Concentrating Solar Power Technology, pp. 602–619. Woodhead Publishing (2012)

    Google Scholar 

  18. Kumar, K.R., Chaitanya, N.V.V.K., Kumar, N.S.: Solar thermal energy technologies and its applications for process heating and power generation – a review. J. Clean. Prod. 282, 125296 (2021)

    Article  Google Scholar 

  19. Ambrosetti, G., Good, P.: A novel approach to high temperature solar receivers with an absorbing gas as heat transfer fluid and reduced radiative losses. Sol. Energy 183, 521–531 (2019)

    Article  Google Scholar 

  20. Fennell, P., Driver, J., Bataille, C., Davis, S.J.: Going net zero for cement and steel. Nature 603, 574–577 (2022)

    Article  Google Scholar 

  21. Broadbent, C.: Steel’s recyclability: demonstrating the benefits of recycling steel to achieve a circular economy. Int. J. Life Cycle Assess. 21(11), 1658–1665 (2016). https://doi.org/10.1007/s11367-016-1081-1

    Article  Google Scholar 

  22. Abbaspour, A., Tanyu, B.F., Cetin, B.: Impact of aging on leaching characteristics of recycled concrete aggregate. Environ. Sci. Pollut. Res. 23(20), 20835–20852 (2016). https://doi.org/10.1007/s11356-016-7217-9

    Article  Google Scholar 

  23. Hopewell, J., Dvorak, R., Kosior, E.: Plastics recycling: challenges and opportunities. Philos. Trans. R Soc. Lond. B Biol. Sci. 364(1526), 2115–2126 (2009)

    Article  Google Scholar 

  24. Ohno, H., Shigetomi, Y., Chapman, A., Fukushima, Y.: Detailing the economy-wide carbon emission reduction potential of post-consumer recycling. Resour. Conserv. Recycl. 166, 105263 (2021)

    Article  Google Scholar 

  25. Fang, H., Xia, J., Zhu, K., Su, Y., Jiang, Y.: Industrial waste heat utilization for low temperature district heating. Energ. Policy 62, 236–246 (2013)

    Article  Google Scholar 

  26. Loni, R., Najafi, G., Bellos, E., Rajaee, F., Said, Z., Mazlan, M.: A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook. J. Clean. Prod. 287, 125070 (2021)

    Article  Google Scholar 

  27. Woolley, E., Luo, Y., Simeone, A.: Industrial waste heat recovery: a systematic approach. Sustain. Energy Technol. Assess. 29, 50–59 (2018)

    Google Scholar 

  28. Ho, C.K., Khalsa, S.S., Kolb, G.J.: Methods for probabilistic modeling of concentrating solar power plants. Sol. Energy 85(4), 669–675 (2011)

    Article  Google Scholar 

  29. Ho, C.K., Kolb, G.J.: Incorporating uncertainty into probabilistic performance models of concentrating solar power plants. J. Sol. Energy Eng. ASME 132(3) (2010)

    Google Scholar 

  30. Andrei, M., Thollander, P., Pierre, I., Gindroz, B., Rohdin, P.: Decarbonization of industry: guidelines towards a harmonized energy efficiency policy program impact evaluation methodology. Energy Rep. 7, 1385–1395 (2021)

    Article  Google Scholar 

  31. Whitlock, A.: Transforming Industry: - Paths to Industrial Decarbonization in the United States (2020)

    Google Scholar 

Download references

Acknowledgments

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND2022-6719 C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford K. Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 American Solar Energy Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ho, C.K. et al. (2022). A Lifecycle Framework for Industrial Decarbonization. In: Ghosh, A.K., Rixham, C. (eds) Proceedings of the American Solar Energy Society National Conference. ASES SOLAR 2022. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-031-08786-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08786-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08785-1

  • Online ISBN: 978-3-031-08786-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics