Skip to main content

UAV Cellular Communication in 5G New Radio Wireless Standards

  • Chapter
  • First Online:
Unmanned Aerial Vehicle Cellular Communications

Abstract

Very recently, unmanned aerial vehicles (UAVs) have aroused the interest of wireless networking researchers. 3GPP’s new radio (NR) is the global standard for the 5G air interface. By delivering 5G base stations to underserved areas, UAVs can help improve 5G mobile networks allowing bandwidth-intensive services like extremely high-definition (EHD) video streaming and additional multimedia services. More so, inherent 3D mobility, autonomy, and intelligent placement of UAVs make them ideal for a wide range of wireless applications. This chapter presents and looks at 3GPP updates and new 5G NR features for aerial devices. Furthermore, a use case scenario was considered where secondary users reuse spectrum resource channels of primary users for both uplink and downlink 5G communication. The simulation for a range of frequency between 3400 and 3800 MHz with an input impedance of 50 ohms produced a delivery ratio of UAV for a range of users. The UAV 1 and UAV 3 showed decreasing form at approximately 20 users and flatten up at convergence form as the number of users increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 3GPP Technica Report 36.777. (2017, December). Technical specification group radio access network; Study on enhanced LTE support for aerial vehicles (Release 15).

    Google Scholar 

  2. Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Galati Giordano, L., Garcia-Rodriguez, A., & Yuan, J. (2019). Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys and Tutorials, 21(4), 3417–3442.

    Article  Google Scholar 

  3. Hentati, I., & Fourati, L. C. (2020). Comprehensive survey of UAVs communication networks. Computer Standards and Interfaces, 72, 103451.

    Article  Google Scholar 

  4. Abdalla, A. S., Powell, K., Marojevic, V., & Geraci, G. (2020). UAV-assisted attack prevention, detection, and recovery of 5G networks. IEEE Wireless Communications, 27(4), 40–47.

    Article  Google Scholar 

  5. Tahir, A., Böling, J., Haghbayan, M.-H., Toivonen, H. T., & Plosila, J. (2019). Swarms of unmanned aerial vehicles—A survey. Journal of Industrial Information Integration, 16, 100106.

    Article  Google Scholar 

  6. Amorosi, L., Chiaraviglio, L., D’Andreagiovanni, F., & Blefari-Melazzi, N. (2018, March 12–14). Energy-efficient mission planning of UAVs for 5G coverage in rural zones. In Proceedings of the 2018 IEEE International Conference on Environmental Engineering (E.E.) (pp. 1–9). Milan, Italy.

    Google Scholar 

  7. Li, B., Fei, Z., & Zhang, Y. (2018). UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet of Things Journal, 6(2), 2241–2263.

    Article  Google Scholar 

  8. Kapoor, R., Shukla, A., & Goyal, V. (2022). Analysis of multiple antenna techniques for unmanned aerial vehicle (UAV) communication. In T. Senjyu, P. Mahalle, T. Perumal, & A. Joshi (Eds.), IOT with smart systems. Smart innovation, systems and technologies (Vol. 251). Springer. https://doi.org/10.1007/978-981-16-3945-6_34

    Chapter  Google Scholar 

  9. Obakhena, H. I., Imoize, A. L., Anyasi, F. I., & Kavitha, K. V. N. (2021). Application of cell-free massive MIMO in 5G and beyond 5G wireless networks: A survey. Journal of Engineering and Applied Science, 68, 13.

    Article  Google Scholar 

  10. Kapoor, R., Shukla, A., & Goyal, V. (2022). Unmanned aerial vehicle (UAV) communications using multiple antennas. In T. K. Gandhi, D. Konar, B. Sen, & K. Sharma (Eds.), Advanced Computational Paradigms and Hybrid Intelligent Computing . Advances in Intelligent Systems and Computing (Vol. 1373). Springer. https://doi.org/10.1007/978-981-16-4369-9_27

    Chapter  Google Scholar 

  11. Aloqaily, M., Hussain, R., Khalaf, D., Hani, D., & Oracevic, A. (2022). On the role of futuristic technologies in securing UAV-supported autonomous vehicles. IEEE Consumer Electronics Magazine (Early Access). https://doi.org/10.1109/MCE.2022.3141065

  12. Liu, X., Lai, B., Lin, B., & Leung, V. C. M. (2022). Joint communication and trajectory optimization for multi-UAV enabled mobile internet of vehicles. IEEE Transactions on Intelligent Transportation Systems (Early Access), 1–13. https://doi.org/10.1109/TITS.2022.3140357

  13. Yang, Z., Chen, M., Liu, X., Liu, Y., Chen, Y., Cui, S., & Vincent Poor, H. (2021, October). AI-driven UAV-NOMA-MEC in next generation wireless networks. IEEE Wireless Communications, 28(5), 66–73.

    Article  Google Scholar 

  14. Lim, W. Y. B., Garg, S., Xiong, Z., Yang, Z., Niyato, D., Leung, C., & Miao, C. (2021). UAV-assisted communication efficient federated learning in the era of the artificial intelligence of things. IEEE Network, 35(5). https://doi.org/10.1109/MNET.002.2000334

  15. Zhao, J., Lanchenhui, Y., Cai, K., Zhu, Y., & Han, Z. (2022). RIS-aided ground-aerial NOMA communications: A distributionally robust DRL approach. IEEE Journal on Selected Areas in Communications (Early Access). https://doi.org/10.1109/JSAC.2022.3143230

  16. Godage, L. (2019). Global unmanned aerial vehicle market (UAV) industry analysis and forecast (2018–2026). Montana Ledger.

    Google Scholar 

  17. Nawaz, H., Ali, H. M., & Laghari, A. A. (2021). UAV communication networks issues: A review. Arch Computat Methods Eng, 28, 1349–1369. https://doi.org/10.1007/s11831-020-09418-0

    Article  Google Scholar 

  18. Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., & Guizani, M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access, 7, 48. 572–48, 634..

    Article  Google Scholar 

  19. Liu, J., Shi, Y., Fadlullah, Z. M., & Kato, N. (2018). Space-air-ground integrated network: A survey. IEEE Communications Surveys and Tutorials, 20(4), 2714–2741.

    Article  Google Scholar 

  20. Jawhar, I., Mohamed, N., Al-Jaroodi, J., Agrawal, D., & Zhang, S. (2017). Communication and networking of UAV-based systems: Classification and associated architectures. Journal of Network and Computer Applications, 84. https://doi.org/10.1016/j.jnca.2017.02.008

  21. Koumaras, H., Makropoulos, G., Batistatos, M., Kolometsos, S., Gogos, A., Xilouris, G., Sarlas, A., & Kourtis, M.-A. (2021). 5G-enabled UAVs with command and control software component at the edge for supporting energy efficient opportunistic networks. Energies, 14, 1480. https://doi.org/10.3390/en14051480

    Article  Google Scholar 

  22. Mozaffari, M., Saad, W., Bennis, M., Nam, Y.-H., & Debbah, M. (2019). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys and Tutorials, 21(3), 2334–2360.

    Article  Google Scholar 

  23. Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies, 54, 86–109.

    Article  Google Scholar 

  24. Oubbati, O. S., Atiquzzaman, M., Ahanger, T. A., & Ibrahim, A. (2020). Softwarization of UAV networks: A survey of applications and future trends. IEEE Access, 8, 98073–98125.

    Article  Google Scholar 

  25. Kodheli, O., Lagunas, E., Maturo, N., Sharma, S. K., Shankar, B., Montoya, J. F. M., Duncan, J. C. M., Spano, D., Chatzinotas, S., Kisseleff, S., Querol, J., Lei, L., Vu, T. X., & Goussetis, G. (2021). Satellite communications in the new space era: A survey and future challenges. IEEE Communications Surveys and Tutorials, 23(1), 70–109.

    Article  Google Scholar 

  26. Boccadoro, P., Striccoli, D., & Grieco, L.A. (2020). Internet of drones: A survey on communications, technologies, protocols, architectures and services. arXiv preprint 2007.12611.

    Google Scholar 

  27. Wu, Q., Xu, J., Zeng, Y., Ng, D. W. K., Al-Dhahir, N., Schober, R., & Swindlehurst, A. L. (2020). 5G-and-beyond networks with UAVs: From communications to sensing and intelligence. arXiv preprint 2010.09317.

    Google Scholar 

  28. Naqvi, S. A. R., Hassan, S. A., Pervaiz, H., & Ni, Q. (2018). Drone-aided communication as a key enabler for 5G and resilient public safety networks. IEEE Communications Magazine, 56(1), 36–42.

    Article  Google Scholar 

  29. Sharma, V., Srinivasan, K., Chao, H.-C., Hua, K.-L., & Cheng, W.-H. (2017). Intelligent deployment of UAVs in 5G heterogeneous communication environment for improved coverage. Journal of Network and Computer Applications, 85, 94–105.

    Article  Google Scholar 

  30. Song, B. D., Kim, J., Kim, J., Park, H., Morrison, J. R., & Shim, D. H. (2014). Persistent UAV service: An improved scheduling formulation and prototypes of system components. Journal of Intelligent and Robotic Systems, 74, 221–232.

    Article  Google Scholar 

  31. For gets elf-driving cars—The Pentagon wants autonomous ships, choppers and jets. The Wall Street Journal (2021).

    Google Scholar 

  32. Zeng, Y., Guvenc, I., Zhang, R., Geraci, G., & Matolak, D. W. (Eds.). (2020). UAV communications for 5G and beyond. Wiley – IEEE Press.

    Google Scholar 

  33. Zeng, Y., Wu, Q., & Zhang, R. (2019). Accessing from the sky: A tutorial on UAV communications for 5G and beyond. Proceedings of the IEEE, 107(12), 2327–2375.

    Article  Google Scholar 

  34. Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwagbemiga Omotayo Shoewu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shoewu, O.O., Akinyemi, L.A., Edozie, R. (2023). UAV Cellular Communication in 5G New Radio Wireless Standards. In: Imoize, A.L., Islam, S.M.N., Poongodi, T., Ramasamy, L.K., Siva Prasad, B. (eds) Unmanned Aerial Vehicle Cellular Communications. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-08395-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08395-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08394-5

  • Online ISBN: 978-3-031-08395-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics