Skip to main content

Unmanned Aerial Vehicle Cellular Communication Operating in Non-terrestrial Networks

  • Chapter
  • First Online:
Unmanned Aerial Vehicle Cellular Communications

Part of the book series: Unmanned System Technologies ((UST))

  • 468 Accesses

Abstract

The impact of the non-terrestrial network on the unmanned aerial vehicle (UAV) has been established. In this work, the channel model and the vertical height of the UAV for both ground users and base stations (BSs) were analysed. The application of NTN on UAV has also been analysed, as well as the capacity of multiple antenna systems for UAV. The results have shown that an increase in the height of the BS increases the optimal value of the BS tilt angle of the antenna. The work has also shown that different empirical models can be used to predict the signal path loss of UAVs in NTN. The work has also shown that for the BS height of 20 m and aerial height of 50 m, the optimal antenna tilt angle was 1°. However, when the height of the BS was doubled (40 m) and the aerial user height remained 50 m, the optimal antenna tilt angle increased to about 5.5°. So, an increase in the height of the BS increases the optimal value of the BS tilt angle of the antenna. Also, an increase in the distance between the BS and the user decreases the elevation angle of the UAV. This work has also shown that introducing multiple antenna arrangements either at the input for transmission or at the output for reception, or at both ends increases the capacity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xin, L., Biaojun, L., Bin, L., & Victor, C. M. L. (2021). Joint communication and trajectory optimization for multi-UAV enabled mobile internet of vehicles. IEEE Transaction on Transportation System, 1–13.

    Google Scholar 

  2. Obakhena, H. I., Imoize, A. L., Anyasi, F. I., & Kavitha, K. V. N. (2021). Application of cell-free massive MIMO in 5G and beyond 5G wireless networks: A survey. Journal of Engineering and Applied Science, 68(13), 1–14. https://doi.org/10.1186/s44147-021-00014-y

    Article  Google Scholar 

  3. Liu, C., Feng, W., Tao, X., & Ge, N. (2021). MEC – Empowered non-terrestrial network for 6G wide area time sensitive Internet of things, 2021. Retrieved from arxiv.org/abs/2103.11907.

  4. Vanelli-Coralli, A., Guidotti, A., Tommanso, F., Colavolpe, G., & Montorsi, G. (2020). 5G and beyond 5G non-terrestrial networks: Trends and research challenges. IEEE 3rd 5G World Forum. https://doi.org/10.1109/5GWF49715.9221119

    Book  Google Scholar 

  5. Alamu, O., Gbanga-Ilori, A., Adelabu, M., Imoize, A. L., & Ladipo, O. (2020). Energy efficiency techniques in ultra-dense wireless heterogeneous networks: An overview and outlook. Engineering Science and Technology, an International Journal, 23, 1308–1326. https://doi.org/10.1016/j.jestch.2020.05.001

    Article  Google Scholar 

  6. Harilaos, K., George, M., Micheal, B., Stavros, K., Anastasios, G., Goerge, X., Athanasios, S., & Michael, K. (2021). 5G–enabled UAVs command and control software component at the edge for supporting energy efficiency opportunistic networks, 2021. https://doi.org/10.3390/en14051480.

  7. Amer, B., & Noureldin, A. (2017). Modelling received signal strength for indoors utilizing hybrid neuro-fuzzy networks. In Modelling, simulation and applied optimization (ICMSAO), 7th international conference (pp. 1–5).

    Google Scholar 

  8. Alsamhi, S. H., & Rajput, N. S. (2014). Performance evaluation of propagation models for efficient handoff in HAPs to sustain QoS (pp. 147–152). Students Conf. on Electrical, Electronics and Computer Science (SCEECS).

    Google Scholar 

  9. Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2018). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. Retrieved from arXiv preprint arXiv: 1803.00680.

    Google Scholar 

  10. Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys and Tutorials, 18(2), 1123–1152.

    Article  Google Scholar 

  11. Bekmezci, I., Sahingoz, O. K., & Teme, S. I. (2013). Flying Ad-Hoc Networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.

    Article  Google Scholar 

  12. Motlagh, N. H., Taleb, T., & Arouk, O. (2016). Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives. IEEE Internet of Things Journal, 3(6), 899–922.

    Article  Google Scholar 

  13. Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials, 18(4), 2624–2661.

    Article  Google Scholar 

  14. Hazim, S., Ahmad, S., Ala, A., Zuochao, D., Eyad, A., Issa, K., Noor, O., Abdallah, K., & Mohsen, G. (2018). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. Qatar Computing Research Institute (QCRI), HBKU.

    Google Scholar 

  15. Amorosi, L., Chiaraviglio, L., O'Andreagiovanni, F., & Biefari-Melazzi, N. (2018). Energy-efficient mission planning of UAVs for 5G coverage in rural zones. In Proc. of the 2018 IEEE international conference on environmental engineering (EE) (pp. 1–9).

    Google Scholar 

  16. Kourtis, M. A., Anagnostopoulos, T., Kuklilski, S., Wierzbicki, M., Oikonomakis, A., Xilouris, G., Chochliouros, I. P., Yi, N., Kostopoulos, A., & L. Tomaszewski L. (2020). 5G network slicing enabling edge services. In Proc. of the 2020 IEEE conf. on network function virtualization and software defined networks (pp. 155–160).

    Google Scholar 

  17. Federica, R., Alessandro, R., & Sara, P. (2021). 5G NR system design: A concise survey of key features and capabilities, 2021. Retrieved from https://doi.org/10.1007/511276-021-02811-y.

  18. Wang, A., Wang, P., Miao, X., Li, X., Ye, N., & Liu, Y. (2020). A review on non-terrestrial wireless technologies for smart city Internet of Things. International Journal of Distributed Sensor Networks, 16(6), 1–17.

    Article  Google Scholar 

  19. Godage, L. (2019). Global unmanned aerial vehicle market (UAO) industry analysis and forecast (2018–2026). Montana.

    Google Scholar 

  20. Kapoor, R., Shukla, A., & Goyal, V. (2022). Unmanned aerial vehicle (UAV) communications using multiple antennas. In T. K. Gandhi, D. Konar, B. Sen, & K. Sharma (Eds.), Advanced computational paradigms and hybrid intelligent computing. Advances in intelligent systems and computing, 1373. Springer. https://doi.org/10.1007/978-981-16-4369-9_27

    Google Scholar 

  21. NASA. (2021). Unmanned aircraft systems report (pp. 45–52).

    Google Scholar 

  22. DARPA, Unmanned Aerial Vehicles (no date).

    Google Scholar 

  23. Imoize, A. L., Ibhaze, A. E., Atayero, A. A., & Kavitha, K. V. N. Standard propagation channel models for MIMO communication systems. Wireless Communications and Mobile Computing, 1–36. https://doi.org/10.1155/2021/8838792

  24. Fu, Z., Zhao, X., Geng, S., et al. (2018, Dec). Channel simulation and validation by QuaDRiGa for suburban microcells under 6 GHz. In 2018 12th international symposium on antennas, propagation and EM theory (ISAPE) (pp. 2018–2021).

    Google Scholar 

  25. Kim, S., Kim, M., Ryu, J. Y., Lee, J., & Quek, T. Q. S. (2021). Non-terrestrial networks for UAVs: base station service provisioning schemes with antenna Tilt. Retrieved from arxiv: 2104.066679V2.

    Google Scholar 

  26. Yang, Z., Zhou, L., Zhao, G., & Zhou, S. (2018). Blockage Modeling for interlayer UAVs communications in urban environments. In Proc. IEEE international conference on telecommunication. (ICT) (pp. 307–311).

    Google Scholar 

  27. Saad, W., Bennis, M., Mozafarri, M., & Lin, X. (2020). Wireless communications and networking for unmanned aerial vehicles. ISBN 9781108691017.

    Book  Google Scholar 

  28. Zhao, J., Yu, L., Cai, K., Zhu, Y., & Han, Z. (2022). RIS-aided ground-aerial NOMA communications: A distributionally robust DRL approach. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2022.3143230

  29. Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine., 54(5), 36–42. https://doi.org/10.1109/MCOM.2016.7470933

    Article  Google Scholar 

  30. Kawamoto, Y., Nishiyama, H., Kato, N., Ono, F., & Miura, F. (2019). Toward future unmanned aerial vehicle networks: Architecture, resource allocation and field experiments. IEEE Wireless Communications, 26(1), 94–99. https://doi.org/10.1109/MWC.2018.1700368

    Article  Google Scholar 

  31. Lim, W. Y. B., Garg, S., Xiong, Z., Zhang, Y., Niyato, D., Leung, C., & Miao, C. (2021). UAV-assisted communication efficient federated learning in the era of the artificial intelligence of things. IEEE Network, 35(5), 188–195. https://doi.org/10.1109/MNET.002.2000334

    Article  Google Scholar 

  32. Geumhwan, C., Junsung, C., Sangwon, H., & Hyoungshick, K. (2020). Sentinel: A secure and efficient authentication framework for unmanned aerial vehicles. https://doi.org/10.3390/10093149

  33. Alsamhi, S. H., Ma, O., & Ansari, M. S. (2019). Predictive estimation of the optimal signal strength for unmanned aerial vehicle over internet of thing using ANN, 2019. Retrieved from www.researchgate.net.

  34. Yang, Z., Chen, M., Liu, X., Liu, Y., Chen, Y., Cui, S., & Poor, H. V. (2021). AI-driven UAV-NOMA-MEC in next generation wireless networks. IEEE Wireless Communications, 28(5), 66–73. https://doi.org/10.1109/MWC.121.2100058

    Article  Google Scholar 

  35. Liu, X., Lai, B., Lin, B., & Leung, V. C. M. (2022). Joint communication and trajectory optimization for multi-UAV enabled mobile internet of vehicles. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2022.3140357

  36. Galkin, B., Kibilda, J., & Dasilva, L. A. (2018). Backhaul for low-attitude UAVs in urban environments. In Proc. IEEE international conference on communication (ICC) (pp. 1–6).

    Google Scholar 

  37. Amer, R., Saad, W., & Marchetti, N. (2019). Toward a connected sky: Performance of beam forming with down-tilted antennas for ground and UAV user co-existence. IEEE Communication Letters, 23(10), 1840–1844.

    Article  Google Scholar 

  38. Aloqaily, M., Hussain, R., Khalaf, D., Hani, D., & Oracevic, A. (2022). On the role of futuristic technologies in securing UAV-supported autonomous vehicles. IEEE Consumer Electronics Magazine. https://doi.org/10.1109/MCE.2022.3141065

  39. Azari, M. M., Rosas, F., Chiumento, A., & Pollins, S. (2017). Coexistence of terrestrial and aerial users in cellular networks. In Proc. IEEE global commun. conf. workshops (pp. 1–6).

    Google Scholar 

  40. Kapoor, R., Shukla, A., & Goyal, V. (2022). Analysis of multiple antenna techniques for unmanned aerial vehicle (UAV) communication. In T. Senjyu, P. Mahalle, T. Perumal, & A. Joshi (Eds.), IOT with smart systems. Smart innovation, systems and technologies, 251. Springer. https://doi.org/10.1007/978-981-16-3945-6_34

    Google Scholar 

  41. Chirag, R. S. (2017). Performance and comparative analysis of SISO, SIMO, MISO, MIMO. International Journal of Wireless Communication and Simulation, 9(1), 1–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Promise Elechi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elechi, P., Onu, K.E. (2023). Unmanned Aerial Vehicle Cellular Communication Operating in Non-terrestrial Networks. In: Imoize, A.L., Islam, S.M.N., Poongodi, T., Ramasamy, L.K., Siva Prasad, B. (eds) Unmanned Aerial Vehicle Cellular Communications. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-08395-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08395-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08394-5

  • Online ISBN: 978-3-031-08395-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics