Skip to main content

ClustMMRA v2: A Scalable Computational Pipeline for the Identification of MicroRNA Clusters Acting Cooperatively on Tumor Molecular Subgroups

  • Chapter
  • First Online:
Systems Biology of MicroRNAs in Cancer

Abstract

In recent cancer genomics programs, large-scale profiling of microRNAs has been routinely used in order to better understand the role of microRNAs in gene regulation and disease. To support the analysis of such amount of data, scalability of bioinformatics pipelines is increasingly important to handle larger datasets.

Here, we describe a scalable implementation of the clustered miRNA Master Regulator Analysis (clustMMRA) pipeline, developed to search for genomic clusters of microRNAs potentially driving cancer molecular subtyping. Genomically clustered microRNAs can be simultaneously expressed to work in a combined manner and jointly regulate cell phenotypes. However, the majority of computational approaches for the identification of microRNA master regulators are typically designed to detect the regulatory effect of a single microRNA.

We have applied the clustMMRA pipeline to multiple pediatric tumor datasets, up to a hundred samples in size, demonstrating very satisfying performances of the software on large datasets. Results have highlighted genomic clusters of microRNAs potentially involved in several subgroups of the different pediatric cancers or specifically involved in the phenotype of a subgroup. In particular, we confirmed the cluster of microRNAs at the 14q32 locus to be involved in multiple pediatric cancers, showing its specific downregulation in tumor subgroups with aggressive phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4:e05005

    Article  PubMed Central  Google Scholar 

  • Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders G, Mackowiak SD, Jens M, Maaskola J, Kuntzagk A, Rajewsky N,Landthaler M, et al (2012) doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res (Database issue)

    Google Scholar 

  • Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2018) Metazoan MicroRNAs. Cell 173(1):20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhavsar SP, Løkke C, Flægstad T, Einvik C (2018) Hsa-miR-376c-3p targets Cyclin D1 and induces G1-cell cycle arrest in neuroblastoma cells. Oncol Lett 16(5):6786–6794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep 11:670–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  • Cantini L, Bertoli G, Cava C, Dubois T, Zinovyev A, Caselle M, Castiglioni I et al (2019) Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer. Nucleic Acids Res 47(5):2205–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu A, Robertson G, Brooks D, Mungall AJ, Birol I, Coope R, Ma Y et al (2016) Large-scale profiling of microRNAs for The Cancer Genome Atlas. Nucleic Acids Res 44(1):e3

    Article  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, Rajaram V et al (2011) Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One 6(10):e25114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cursons J, Pillman KA, Scheer KG, Gregory PA, Foroutan M, Hediyeh-Zadeh S, Toubia J et al (2018) Combinatorial Targeting by MicroRNAs Co-ordinates Post-transcriptional Control of EMT. Cell Syst 7(1):77–91.e7

    Article  CAS  PubMed  Google Scholar 

  • Dexheimer PJ, Cochella L (2020) MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 8:409

    Article  PubMed  PubMed Central  Google Scholar 

  • Forget A, Martignetti L, Puget S, Calzone L, Brabetz S, Picard D, Montagud A et al (2018) Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell 34(3):379–395

    Article  CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausser J, Zavolan M (2014) Identification and consequences of miRNA–target interactions–beyond repression of gene expression. Nat Rev Genet 15:599–612

    Article  CAS  PubMed  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632

    Article  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Zhou Z, Reed M, Califano A (2017) Accelerated parallel algorithm for gene network reverse engineering. BMC Syst Biol 11:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7(11):e1000238

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill KE, Kelly AD, Kuijjer ML, Barry W, Rattani A, Garbutt CC, Kissick H et al (2017) An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets. J Hematol Oncol 10(1):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y et al (2020) miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 48(D1):D148–D154

    CAS  PubMed  Google Scholar 

  • John CR, Watson D, Russ D, Goldmann K, Ehrenstein M, Pitzalis C, Barnes M (2020) M3C: Monte Carlo reference-based consensus clustering. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB et al (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466(7306):632–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284. https://doi.org/10.1038/ng2135

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    Article  CAS  PubMed  Google Scholar 

  • Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  • Lachmann A, Giorgi FM, Lopez G, Califano A (2016) ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics 32(14):2233–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Li WH (2007) MicroRNA regulation of human protein protein interaction network. RNA 13(9):1402–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang X (2019) Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 20(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucon DR, Rocha Cde S, Craveiro RB, Dilloo D, Cardinalli IA, Cavalcanti DP, Aguiar Sdos S et al (2013a) Downregulation of 14q32 microRNAs in Primary Human Desmoplastic Medulloblastoma. Front Oncol 25(3):254

    Google Scholar 

  • Lucon DR, Rocha Cde S, Craveiro RB, Dilloo D, Cardinalli IA, Cavalcanti DP et al (2013bSep 25) Downregulation of 14q32 microRNAs in Primary Human Desmoplastic Medulloblastoma. Front Oncol 3:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  CAS  PubMed  Google Scholar 

  • Marco A, Ninova M, Ronshaugen M, Griffiths-Jones S (2013) Clusters of microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids Res 41(16):7745–7752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A (2006) Reverse engineering cellular networks. Nat Protoc 1(2):662–671

    Article  CAS  PubMed  Google Scholar 

  • Mestdagh P, Boström AK, Impens F, Fredlund E, Van Peer G, De Antonellis P, von Stedingk K et al (2010) The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell 40(5):762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52(1):91–118

    Article  Google Scholar 

  • Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, de Stanchina E et al (2009) Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23(24):2806–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy BL, Obad S, Bihannic L, Ayrault O, Zindy F, Kauppinen S, Roussel MF (2013) Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. CancerRes 73(23):7068–7078

    CAS  Google Scholar 

  • Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C, Li QJ et al (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23(24):2839–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima G, Poli EC, Bolt MJ, Chlenski A, Forde M, Jutzy JMS, Biyani N et al (2019) DNA Methylation Controls Metastasis-Suppressive 14q32-Encoded miRNAs. Cancer Res 79(3):650–662

    Article  CAS  PubMed  Google Scholar 

  • Rooj AK, Ricklefs F, Mineo M, Nakano I, Chiocca EA, Bronisz A, Godlewski J (2017) MicroRNA-Mediated dynamic bidirectional shift between the subclasses of glioblastoma Stem-like cells. Cell Rep 19:2026–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth SA, Knutsen E, Fiskaa T, Utnes P, Bhavsar S, Hald ØH, Løkke C et al (2016) Next generation sequencing of microRNAs from isogenic neuroblastoma cell lines isolated before and after treatment. Cancer Lett 372(1):128–136

    Article  CAS  PubMed  Google Scholar 

  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    Article  CAS  PubMed  Google Scholar 

  • Shahar T, Granit A, Zrihan D, Canello T, Charbit H, Einstein O, Rozovski U et al (2016) Expression level of miRNAs on chromosome 14q32.31 region correlates with tumor aggressiveness and survival of glioblastoma patients. J Neuro-Oncol 130(3):413–422

    Article  CAS  Google Scholar 

  • Soriano A, Masanas M, Boloix A, Masiá N, París-Coderch L, Piskareva O, Jiménez C et al (2019) Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cell Mol Life Sci 76(11):2231–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38(1):140–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L et al (2009) The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci U S A 106(8):2812–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL (2009) Weinberg R.A.A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Roosbroeck K, Calin GA (2017) Cancer Hallmarks and MicroRNAs: The Therapeutic Connection Adv. Cancer Res 135:119–149

    Article  Google Scholar 

  • Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, Kye MJ et al (2012) Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 123(4):539–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV, Zhao Y et al (2013) Integrated analyses identify a master MicroRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23:186–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from ITMO Cancer AVIESAN (National Alliance for Life Sciences and Health), within the framework of the Plan Cancer 2014–2019 and convention “2018, Non-coding RNA in cancerology: fundamental to translational (18CN039-00)” and the European Commission’s Horizon 2020 Program, H2020-SC1-DTH-2018-1, “iPC—individualizedPaediatricCure” (ref. 826121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Martignetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernandez, C., Cancila, G., Ayrault, O., Zinovyev, A., Martignetti, L. (2022). ClustMMRA v2: A Scalable Computational Pipeline for the Identification of MicroRNA Clusters Acting Cooperatively on Tumor Molecular Subgroups. In: Schmitz, U., Wolkenhauer, O., Vera-González, J. (eds) Systems Biology of MicroRNAs in Cancer. Advances in Experimental Medicine and Biology, vol 1385. Springer, Cham. https://doi.org/10.1007/978-3-031-08356-3_10

Download citation

Publish with us

Policies and ethics