Skip to main content

Advertisement

Log in

Expression level of miRNAs on chromosome 14q32.31 region correlates with tumor aggressiveness and survival of glioblastoma patients

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The 54 microRNAs (miRNAs) within the DLK-DIO3 genomic region on chromosome 14q32.31 (cluster-14-miRNAs) are organized into sub-clusters 14A and 14B. These miRNAs are downregulated in glioblastomas and might have a tumor suppressive role. Any association between the expression levels of cluster-14-miRNAs with overall survival (OS) is undetermined. We randomly selected miR-433, belonging to sub-cluster 14A and miR-323a-3p and miR-369-3p, belonging to sub-cluster 14B, and assessed their role in glioblastomas in vitro and in vivo. We also determined the expression level of cluster-14-miRNAs in 27 patients with newly diagnosed glioblastoma, and analyzed the association between their level of expression and OS. Overexpression of miR-323a-3p and miR-369-3p, but not miR-433, in glioblastoma cells inhibited their proliferation and migration in vitro. Mice implanted with glioblastoma cells overexpressing miR323a-3p and miR369-3p, but not miR433, exhibited prolonged survival compared to controls (P = .003). Bioinformatics analysis identified 13 putative target genes of cluster-14-miRNAs, and real-time RT-PCR validated these findings. Pathway analysis of the putative target genes identified neuregulin as the most enriched pathway. The expression level of cluster-14-miRNAs correlated with patients’ OS. The median OS was 8.5 months for patients with low expression levels and 52.7 months for patients with high expression levels (HR 0.34; 95 % CI 0.12–0.59, P = .003). The expression level of cluster-14-miRNAs correlates directly with OS, suggesting a role for this cluster in promoting aggressive behavior of glioblastoma, possibly through ErBb/neuregulin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. doi:10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  2. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15:6002–6007. doi:10.1158/1078-0432.CCR-09-0715

    Article  CAS  PubMed  Google Scholar 

  3. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    Article  CAS  PubMed  Google Scholar 

  4. Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, Makino K, Saya H, Hirano H, Kuratsu J, Oka K, Ishimaru Y, Ushio Y (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970

    CAS  PubMed  Google Scholar 

  5. Holliday EB, Sulman EP (2013) Tumor prognostic factors and the challenge of developing predictive factors. Curr Oncol Rep 15:33–46. doi:10.1007/s11912-012-0283-3

    Article  PubMed  Google Scholar 

  6. Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, Yuan J, Qu L, Cheng SY, Li J (2010) miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol 177:29–38. doi:10.2353/ajpath.2010.090812

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhi F, Chen X, Wang S, Xia X, Shi Y, Guan W, Shao N, Qu H, Yang C, Zhang Y, Wang Q, Wang R, Zen K, Zhang CY, Zhang J, Yang Y (2010) The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer 46:1640–1649. doi:10.1016/j.ejca.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  8. Lavon I, Zrihan D, Granit A, Einstein O, Fainstein N, Cohen MA, Zelikovitch B, Shoshan Y, Spektor S, Reubinoff BE, Felig Y, Gerlitz O, Ben-Hur T, Smith Y, Siegal T (2010) Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neurooncol 12:422–433. doi:10.1093/neuonc/nop061

    CAS  Google Scholar 

  9. Gardiner E, Beveridge NJ, Wu JQ, Carr V, Scott RJ, Tooney PA, Cairns MJ (2012) Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry 17:827–840. doi:10.1038/mp.2011.78

    Article  CAS  PubMed  Google Scholar 

  10. Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14:1741–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glazov EA, McWilliam S, Barris WC, Dalrymple BP (2008) Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals. Mol Biol Evol 25:939–948. doi:10.1093/molbev/msn045

    Article  CAS  PubMed  Google Scholar 

  13. Ferron SR, Charalambous M, Radford E, McEwen K, Wildner H, Hind E, Morante-Redolat JM, Laborda J, Guillemot F, Bauer SR, Farinas I, Ferguson-Smith AC (2011) Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475:381–385. doi:10.1038/nature10229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benetatos L, Vartholomatos G, Hatzimichael E (2014) DLK1-DIO3 imprinted cluster in induced pluripotency: landscape in the mist. Cell Mol Life Sci 71:4421–4430 doi:10.1007/s00018-014-1698-9

    Article  CAS  PubMed  Google Scholar 

  15. Zehavi L, Avraham R, Barzilai A, Bar-Ilan D, Navon R, Sidi Y, Avni D, Leibowitz-Amit R (2012) Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer 11:44 doi:10.1186/1476-4598-11-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lucon DR, Rocha Cde S, Craveiro RB, Dilloo D, Cardinalli IA, Cavalcanti DP, Aguiar Sdos S, Maurer-Morelli C, Yunes JA (2013) Downregulation of 14q32 microRNAs in primary human desmoplastic medulloblastoma. Front Oncol 3:254. doi:10.3389/fonc.2013.00254

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, Johnstone CN, Megraw MS, Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Leminen A, Simossis VA, Sandaltzopoulos R, Naomoto Y, Katsaros D, Gimotty PA, DeMichele A, Huang Q, Butzow R, Rustgi AK, Weber BL, Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 105:7004–7009. doi:10.1073/pnas.0801615105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Formosa A, Markert EK, Lena AM, Italiano D, Finazzi-Agro E, Levine AJ, Bernardini S, Garabadgiu AV, Melino G, Candi E (2014) MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 33:5173–5182. doi:10.1038/onc.2013.451

    Article  CAS  PubMed  Google Scholar 

  19. Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 102:13212–13217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lavon I, Refael M, Zelikovitch B, Shalom E, Siegal T (2010) Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neurooncol 12:173–180. doi:10.1093/neuonc/nop041

    CAS  Google Scholar 

  21. Lavon I, Zrihan D, Zelikovitch B, Fellig Y, Fuchs D, Soffer D, Siegal T (2007) Longitudinal assessment of genetic and epigenetic markers in oligodendrogliomas. Clin Cancer Res 13:1429–1437. doi:10.1158/1078-0432.CCR-06-2050

    Article  CAS  PubMed  Google Scholar 

  22. Capper D, Reuss D, Schittenhelm J, Hartmann C, Bremer J, Sahm F, Harter PN, Jeibmann A, von Deimling A (2011) Mutation-specific IDH1 antibody differentiates oligodendrogliomas and oligoastrocytomas from other brain tumors with oligodendroglioma-like morphology. Acta Neuropathol 121:241–252. doi:10.1007/s00401-010-0770-2

    Article  PubMed  Google Scholar 

  23. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284. doi:10.1038/ng2135

    Article  CAS  PubMed  Google Scholar 

  24. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14. doi:10.1186/1741-7015-6-14

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413. doi:10.1002/ijc.24522

    Article  CAS  PubMed  Google Scholar 

  26. Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000. doi:10.1158/0008-5472.CAN-07-1045

    Article  CAS  PubMed  Google Scholar 

  27. Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009

    Article  CAS  PubMed  Google Scholar 

  28. Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USA 107:2183–2188 pii] 10.1073/pnas.0909896107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130. doi:10.1158/0008-5472.CAN-08-2629

    Article  CAS  PubMed  Google Scholar 

  30. Lee ST, Chu K, Oh HJ, Im WS, Lim JY, Kim SK, Park CK, Jung KH, Lee SK, Kim M, Roh JK (2010) Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol. doi:10.1007/s11060-010-0286-6

    PubMed Central  Google Scholar 

  31. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, Holland EC (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23:1327–1337. doi:10.1101/gad.1777409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lavon I (2012) The role of microRNAs in gliomas and their potential applications for diagnosis and treatment. In: Farassati PF (ed) Novel therapeutic concepts in targeting glioma. InTech, Rijeka

    Google Scholar 

  33. Gattolliat CH, Thomas L, Ciafre SA, Meurice G, Le Teuff G, Job B, Richon C, Combaret V, Dessen P, Valteau-Couanet D, May E, Busson P, Douc-Rasy S, Benard J (2011) Expression of miR-487b and miR-410 encoded by 14q32.31 locus is a prognostic marker in neuroblastoma. Br J Cancer 105:1352–1361. doi:10.1038/bjc.2011.388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, Andrew Lister T, Young BD, Debernardi S (2008) Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 3:e2141. doi:10.1371/journal.pone.0002141

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, Garcia-Foncillas J (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29. doi:10.1186/1476-4598-5-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cahill S, Smyth P, Denning K, Flavin R, Li J, Potratz A, Guenther SM, Henfrey R, O’Leary JJ, Sheils O (2007) Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer 6:21. doi:10.1186/1476-4598-6-21

    Article  PubMed  PubMed Central  Google Scholar 

  37. Genovesi LA, Carter KW, Gottardo NG, Giles KM, Dallas PB (2011) Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells. PLoS One 6:e23935. doi:10.1371/journal.pone.0023935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, Yoshida K, Sasaki H, Nomura S, Seto Y, Kaminishi M, Calin GA, Croce CM (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11:136–146. doi:10.1016/S1470-2045(09)70343-2

    Article  CAS  PubMed  Google Scholar 

  39. Shih KK, Qin LX, Tanner EJ, Zhou Q, Bisogna M, Dao F, Olvera N, Viale A, Barakat RR, Levine DA (2011) A microRNA survival signature (MiSS) for advanced ovarian cancer. Gynecol Oncol 121:444–450. doi:10.1016/j.ygyno.2011.01.025

    Article  CAS  PubMed  Google Scholar 

  40. Guled M, Lahti L, Lindholm PM, Salmenkivi K, Bagwan I, Nicholson AG, Knuutila S (2009) CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis. Genes Chromosomes Cancer 48:615–623 doi:10.1002/gcc.20669

    Article  CAS  PubMed  Google Scholar 

  41. Lian HW, Zhou Y, Jian ZH, Liu RZ (2014) MiR-323-5p acts as a tumor suppressor by targeting the insulin-like growth factor 1 receptor in human glioma cells. Asian Pac J Cancer Prev 15: 10181–10185

    Article  PubMed  Google Scholar 

  42. Yang Z, Tsuchiya H, Zhang Y, Hartnett ME, Wang L (2013) MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response element-binding protein. J Biol Chem 288:28893–28899. doi:10.1074/jbc.M113.502682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xue J, Chen LZ, Li ZZ, Hu YY, Yan SP, Liu LY (2015) MicroRNA-433 inhibits cell proliferation in hepatocellular carcinoma by targeting p21 activated kinase (PAK4). Mol Cell Biochem 399:77–86. doi:10.1007/s11010-014-2234-9

    Article  CAS  PubMed  Google Scholar 

  44. Guo LH, Li H, Wang F, Yu J, He JS (2013) The Tumor Suppressor Roles of miR-433 and miR-127 in Gastric Cancer. Int J Mol Sci 14:14171–14184. doi:10.3390/ijms140714171

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390. doi:10.1038/378386a0

    Article  CAS  PubMed  Google Scholar 

  46. Shah NM, Marchionni MA, Isaacs I, Stroobant P, Anderson DJ (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77:349–360

    Article  CAS  PubMed  Google Scholar 

  47. Ritch PS, Carroll SL, Sontheimer H (2005) Neuregulin-1 enhances survival of human astrocytic glioma cells. Glia 51:217–228. doi:10.1002/glia.20197

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao WJ, Schachner M (2013) Neuregulin 1 enhances cell adhesion molecule l1 expression in human glioma cells and promotes their migration as a function of malignancy. J Neuropathol Exp Neurol 72:244–255. doi:10.1097/NEN.0b013e3182863dc5

    Article  CAS  PubMed  Google Scholar 

  49. Yin F, Zhang JN, Wang SW, Zhou CH, Zhao MM, Fan WH, Fan M, Liu S (2015) MiR-125a-3p regulates glioma apoptosis and invasion by regulating Nrg1. PLoS One 10:e0116759. doi:10.1371/journal.pone.0116759

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Lavon.

Ethics declarations

Conflict of interest

All of the authors declare no conflicts of interest to disclose.

Additional information

Tal Shahar, Avital Granit, Zvi Ram, Tali Siegal and Iris Lavon have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 43 KB)

Supplementary material 2 (XLSX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahar, T., Granit, A., Zrihan, D. et al. Expression level of miRNAs on chromosome 14q32.31 region correlates with tumor aggressiveness and survival of glioblastoma patients. J Neurooncol 130, 413–422 (2016). https://doi.org/10.1007/s11060-016-2248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2248-0

Keywords

Navigation