Skip to main content

A Review of Flexible Transformations for Modeling Compositional Data

  • Chapter
  • First Online:
Advances and Innovations in Statistics and Data Science

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

Vectors of non-negative components carrying only relative information, and often normalized to sum to one, are referred to as compositional data and their sample space is the simplex. Compositional data arise in many applications across a variety of disciplines such as ecology, geology, demography, and economics to name a few. For some time, log-ratio methods have been a popular approach for analyzing compositional data and have motivated much of the recent research in the area. In this paper, we consider two recently proposed transformations for data defined on the simplex. The first, referred to as the α-transformation, transforms the data from the simplex to a subset of Euclidean space while a more complex transformation, involving folding, results in data with Euclidean sample space. In both cases, the transformed data are assumed to follow a multivariate normal distribution and the parameter α provides flexibility compared to the traditional log-ratio transformations. Through an empirical study using several real-life data sets we illustrate that the α-transformation may be sufficient and preferred in practice compared to the α-folded model, and further that it is often needed over the log-ratio transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika 70(1), 57–65.

    Article  Google Scholar 

  • Aitchison, J. (2003). The statistical analysis of compositional data. New Jersey: The Blackburn Press.

    Google Scholar 

  • Ankam, D., & Bouguila, N. (2018). Compositional data analysis with PLS-DA and security applications. In: Proceedings of the 2018 IEEE International Conference on Information Reuse and Integration (IRI) (pp. 338–345).

    Google Scholar 

  • Atteia, O., Dubois, J., & Webster, R. (1994). Geostatistical analysis of soil contamination in the Swiss Jura. Environmental Pollution, 86(3), 315–327.

    Article  CAS  PubMed  Google Scholar 

  • Baxter, M., Cool, H., & Heyworth, M. (1990). Principal component and correspondence analysis of compositional data: some similarities. Journal of Applied Statistics, 17(2), 229–235.

    Article  Google Scholar 

  • Baxter, M., Beardah, C., Cool, H., & Jackson, C. (2005). Compositional data analysis of some alkaline glasses. Mathematical Geology, 37(2), 183–196.

    Article  CAS  Google Scholar 

  • Buxeda i Garrigós, J. (2008). Revisiting the compositional data. Some fundamental questions and new prospects in Archaeometry and Archaeology. In: Proceedings of the 3rd Compositional Data Analysis Workshop, Girona, Spain

    Google Scholar 

  • Egozcue, J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300.

    Article  Google Scholar 

  • Graf, M. (2020). SGB: Simplicial Generalized Beta Regression. https://CRAN.R-project.org/package=SGB. R package version 1.0.1.

  • Greenacre, M. (2002). Ratio maps and correspondence analysis. Tech. rep., Spain: Universitat Pompeu Fabra.

    Google Scholar 

  • Greenacre, M. (2009). Power transformations in correspondence analysis. Computational Statistics & Data Analysis, 53(8), 3107–3116.

    Article  Google Scholar 

  • Hartigan, J. (1975). Clustering algorithms. New York: Willey.

    Google Scholar 

  • Hron, K., Jelínková, M., Filzmoser, P., Kreuziger, R., Bednář, P., & Barták, P. (2012). Statistical analysis of wines using a robust compositional biplot. Talanta, 90, 46–50.

    Article  CAS  PubMed  Google Scholar 

  • Lancaster, H. (1965). The Helmert matrices. American Mathematical Monthly, 72(1), 4–12.

    Article  Google Scholar 

  • Larrosa, J. (2003). A compositional statistical analysis of capital stock. In: Proceedings of the 1st Compositional Data Analysis Workshop, Girona, Spain.

    Google Scholar 

  • Louzada, F., Shimizu, T.K., Suzuki, A.K., Mazucheli, J., & Ferreira, P.H. (2018). Compositional regression modeling under tilted normal errors: An application to a brazilian super league volleyball data set. Chilean Journal of Statistics (ChJS), 9(2), 33–53.

    Google Scholar 

  • Otero, N., Tolosana-Delgado, R., Soler, A., Pawlowsky-Glahn, V., & Canals, A. (2005). Relative vs. absolute statistical analysis of compositions: A comparative study of surface waters of a Mediterranean river. Water Research, 39(7), 1404–1414.

    Article  CAS  PubMed  Google Scholar 

  • Palarea-Albaladejo, J., Martín-Fernández, J. (2008). A modified EM alr-algorithm for replacing rounded zeros in compositional data sets. Computers & Geosciences, 34(8), 902–917.

    Article  Google Scholar 

  • Palarea-Albaladejo, J., Martín-Fernández, J., & Gómez-García, J. (2007). A parametric approach for dealing with compositional rounded zeros. Mathematical Geology, 39(7), 625–645.

    Article  CAS  Google Scholar 

  • Scealy, J., & Welsh, A. (2011). Properties of a square root transformation regression model. In: Proceedings of the 4rth Compositional Data Analysis Workshop, Girona, Spain.

    Google Scholar 

  • Scealy, J., & Welsh, A. (2011). Regression for compositional data by using distributions defined on the hypersphere. Journal of the Royal Statistical Society. Series B, 73(3), 351–375.

    Article  Google Scholar 

  • Scealy, J., Welsh, A. (2014b). Colours and cocktails: Compositional data analysis 2013 Lancaster lecture. Australian & New Zealand Journal of Statistics, 56(2), 145–169.

    Article  Google Scholar 

  • Scealy, J., De Caritat, P., Grunsky, E.C., Tsagris, M.T., & Welsh, A. (2015). Robust principal component analysis for power transformed compositional data. Journal of the American Statistical Association, 110(509), 136–148.

    Article  CAS  Google Scholar 

  • Skilbeck, C. (1985). Sedimentological Development of the Myall Trough: Carboniferous Forearc Basin. Ph.D. thesis, Australia: The University of Sydney.

    Google Scholar 

  • Stephens, M.A.: Use of the von Mises distribution to analyse continuous proportions. Biometrika, 69(1), 197–203 (1982).

    Article  Google Scholar 

  • Stewart, C., & Field, C. (2011). Managing the Essential Zeros in Quantitative Fatty Acid Signature Analysis. Journal of Agricultural, Biological, and Environmental Statistics, 16(1), 45–69.

    Article  Google Scholar 

  • Templ, M., Hron, K., & Filzmoser, P. (2010). robCompositions: Robust Estimation for Compositional Data. R package version, vol. 1(3).

    Google Scholar 

  • Tsagris, M. (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3), 519–534.

    Article  Google Scholar 

  • Tsagris, M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2), 47–57.

    Google Scholar 

  • Tsagris, M., Preston, S., & Wood, A. (2011). A data-based power transformation for compositional data. In: Proceedings of the 4rth Compositional Data Analysis Workshop, Girona, Spain.

    Google Scholar 

  • Tsagris, M., Preston, S., & Wood, A. T. (2016). Improved classification for compositional data using the α-transformation. Journal of Classification, 33(2), 243–261.

    Article  Google Scholar 

  • Tsagris, M., Preston, S., & Wood, A.T. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2), 406–422

    Article  Google Scholar 

  • Tsagris, M., & Stewart, C. (2020). A folded model for compositional data analysis. Australian & New Zealand Journal of Statistics, 62(2), 249–277.

    Article  Google Scholar 

  • Tsagris, M., Athineou, G., & Alenazi, A. (2020). Compositional: Compositional Data Analysis. https://CRAN.R-project.org/package=Compositional. R package version 4.3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsagris, M., Stewart, C. (2022). A Review of Flexible Transformations for Modeling Compositional Data. In: He, W., Wang, L., Chen, J., Lin, C.D. (eds) Advances and Innovations in Statistics and Data Science. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-08329-7_10

Download citation

Publish with us

Policies and ethics