Skip to main content

Transgene-Free Genome Editing in Plants

  • Chapter
  • First Online:
Genome Editing

Abstract

Genome editing has revolutionized genetics and breeding likewise. Especially in plant breeding, it opened new ways to address traits with never known specificity. In many cases genome editing tools are provided by classical transgenic methods, i.e., by Agrobacterium-based delivery, but it is also possible to perform genome editing without the use of a transgene by providing proteins, or nucleic acid protein complexes. These methods have the big advantage that transgene organisms can be avoided at any time; even transgenic intermediates are not needed. However, transgene-free methods are technically challenging, and editing rates are often lower compared to classical methods. Nevertheless, it offers great opportunities to produce plants without the need of any transgene, simplifying the regulatory processes in many jurisdictions around the globe. In this chapter, we present methods and delivery methods that can be used for transgene-free editing and present first promising examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali Z, Mahas A, Mahfouz M (2018) CRISPR/Cas13 as a Tool for RNA Interference. Trends Plant Sci 23:374–378. Available: http://dx.doi.org/10.1016/j.tplants.2018.03.003

  • Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ et al (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19(1):1–9

    Article  Google Scholar 

  • Ariga H, Toki S, Ishibashi K (2020) Potato virus X Vector-mediated DNA-Free genome editing in plants. Plant Cell Physiol 61(11):1946–1953

    Article  CAS  Google Scholar 

  • Augustine SM, Cherian AV, Seiling K, Di Fiore S, Raven N, Commandeur U, Schillberg S (2021) Targeted mutagenesis in Nicotiana tabacum ADF gene using shockwave-mediated ribonucleoprotein delivery increases osmotic stress tolerance. Physiol Plant 173(3):993–1007. https://doi.org/10.1111/ppl.13499. Epub 2021 Jul 28. PMID: 34265107

  • Badhan S, Ball AS, Mantri N (2021) First report of CRISPR/Cas9 Mediated DNA-Free Editing of 4CL and RVE7 genes in Chickpea protoplasts. Int J Mol Sci 22(1). https://doi.org/10.3390/ijms22010396

  • Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163

    Article  CAS  Google Scholar 

  • Banakar R, Eggenberger AL, Lee K, Wright DA, Murugan K, Zarecor S et al (2019) High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Sci Rep 9(1):19902. https://doi.org/10.1038/s41598-019-55681-y

    Article  CAS  Google Scholar 

  • Banakar R, Schubert M, Collingwood M, Vakulskas C, Eggenberger AL, Wang K (2020) Comparison of CRISPR-Cas9/Cas12a Ribonucleoprotein complexes for genome editing efficiency in the Rice Phytoene Desaturase (OsPDS) gene. Rice (New York, N.Y.) 13(1):4. https://doi.org/10.1186/s12284-019-0365-z

    Article  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  Google Scholar 

  • Becker S, Boch J (2016) TALEs spin along, but not around. Nature Chem Biol 12(10):766–768

    Article  CAS  Google Scholar 

  • Becker S, Boch J (2021) TALE and TALEN genome editing technologies. Gene Genome Editin 2:100007

    Article  CAS  Google Scholar 

  • Beumer KJ, Trautman JK, Christian M, Dahlem TJ, Lake CM, Hawley RS et al (2013) Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila. G3 (Bethesda, Md.) 3(10):1717–1725. https://doi.org/10.1534/g3.113.007260

    Article  CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    Article  CAS  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561

    Article  CAS  Google Scholar 

  • Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045

    Article  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82–e82

    Article  CAS  Google Scholar 

  • Cody WB, Scholthof HB, Mirkov TE (2017) Multiplexed gene editing and protein overexpression using a tobacco mosaic virus viral vector. Plant Physiol 175(1):23–35

    Article  CAS  Google Scholar 

  • Fan Y, Xin S, Dai X, Yang X, Huang H, Hua Y (2020) Efficient genome editing of rubber tree (hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Ind Crops Prod 146:112146. https://doi.org/10.1016/j.indcrop.2020.112146

    Article  CAS  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang D-L, Wei P et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Research 23(10):1229–1232. https://doi.org/10.1038/cr.2013.114

    Article  CAS  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551(7681):464–471. https://doi.org/10.1038/nature24644

    Article  CAS  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  Google Scholar 

  • González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält A-S et al (2019) Reduced enzymatic browning in potato tubers by specific editing of a Polyphenol Oxidase gene via Ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Front Plant Sci 10:1649. https://doi.org/10.3389/fpls.2019.01649

    Article  Google Scholar 

  • Grens K (2015) There’s CRISPR in your yogurt: we’ve all been eating food enhanced by the genome-editing tool for years. Scientist 29(1):1–5

    Google Scholar 

  • Grohmann L, Keilwagen J, Duensing N, Dagand E, Hartung F, Wilhelm R et al (2019) Detection and identification of genome editing in plants: challenges and opportunities. Front Plant Sci 10:236

    Article  Google Scholar 

  • Guo B, Itami J, Oikawa K, Motoda Y, Kigawa T, Numata K (2019) Native protein delivery into rice callus using ionic complexes of protein and cell-penetrating peptides. PloS One 14(7):e0214033. https://doi.org/10.1371/journal.pone.0214033

    Article  CAS  Google Scholar 

  • Huang T-K, Puchta H (2021) Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Trans Res. https://doi.org/10.1007/s11248-021-00238-x

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    Article  CAS  Google Scholar 

  • Jansen R, van Embden J, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  • Kang B-C, Yun J-Y, Kim S-T, Shin YJ, Ryu J, Choi M et al (2018) Precision genome engineering through adenine base editing in plants. Nat Plant 4(7):427–431. https://doi.org/10.1038/s41477-018-0178-x

    Article  CAS  Google Scholar 

  • Kang S, Jeon S, Kim S, Chang YK, Kim Y-C (2020) Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Kazama T, Okuno M, Watari Y, Yanase S, Koizuka C, Tsuruta Y et al (2019) Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat Plant 5(7):722–730

    Article  CAS  Google Scholar 

  • Kim H, Choi J (2021) A robust and practical CRISPR/crRNA screening system for soybean cultivar editing using LbCpf1 ribonucleoproteins. Plant Cell Rep 40(6):1059–1070. https://doi.org/10.1007/s00299-020-02597-x

    Article  CAS  Google Scholar 

  • Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406. https://doi.org/10.1038/ncomms14406

    Article  CAS  Google Scholar 

  • Kim J-S, Kang B-C, Bae S-J, Lee S, Lee JS, Kim A et al (2021) Chloroplast and mitochondrial DNA editing in plants. Nat Plant 7:899–905

    Article  Google Scholar 

  • Lee MH, Lee J, Choi SA, Kim Y-S, Koo O, Choi SH et al (2020) Efficient genome editing using CRISPR–Cas9 RNP delivery into cabbage protoplasts via electro-transfection. Plant Biotechnol Rep 14(6):695–702. https://doi.org/10.1007/s11816-020-00645-2

    Article  Google Scholar 

  • Li S, Song Z, Liu C, Chen X-L, Han H (2019) Biomimetic mineralization-based CRISPR/Cas9 ribonucleoprotein nanoparticles for gene editing. ACS Appl Mater Interface 11(51):47762–47770. https://doi.org/10.1021/acsami.9b17598

    Article  CAS  Google Scholar 

  • Lin Q, Zhu Z, Liu G, Sun C, Lin D, Xue C et al (2021) Genome editing in plants with MAD7 nuclease. J Genet Genomic 48:444–451

    Article  CAS  Google Scholar 

  • Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang J-P, Ondzighi-Assoume CA et al (2020) Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Rep 39(2):245–257

    Article  CAS  Google Scholar 

  • Ma X, Zhang X, Liu H, Li Z (2020) Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nat Plants 6(7):773–779

    Article  CAS  Google Scholar 

  • Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ et al (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18(2):67–83

    Article  CAS  Google Scholar 

  • Makhotenko AV, Khromov AV, Snigir EA, Makarova SS, Makarov VV, Suprunova TP et al (2019) Functional analysis of Coilin in virus resistance and stress tolerance of Potato Solanum tuberosum using CRISPR-Cas9 editing. Doklady Biochem Biophys 484(1):88–91. https://doi.org/10.1134/S1607672919010241

    Article  CAS  Google Scholar 

  • Menz J, Modrzejewski D, Hartung F, Wilhelm R, Sprink T (2020) Genome edited crops touch the market: a view on the global development and regulatory environment. Front Plant Sci 11:586027

    Article  Google Scholar 

  • Metje-Sprink J, Menz J, Modrzejewski D, Sprink T (2019) DNA-free genome editing: past, present and future. Front Plant Sci 9:1957

    Article  Google Scholar 

  • Metje-Sprink J, Sprink T, Hartung F (2020) Genome-edited plants in the field. Curr Opn Biotechnol 61:1–6

    Article  CAS  Google Scholar 

  • Modrzejewski D, Hartung F, Sprink T, Krause D, Kohl C, Wilhelm R (2019) What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environ Eviden 8(1):1–33

    Google Scholar 

  • Modrzejewski D, Hartung F, Lehnert H, Sprink T, Kohl C, Keilwagen J, Wilhelm R (2020) Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas: a systematic review in plants. Front Plant Sci 11:1838

    Article  Google Scholar 

  • Mojica FJM, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182

    Article  CAS  Google Scholar 

  • Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A et al (2020) A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583(7817):631–637

    Article  CAS  Google Scholar 

  • Murovec J, Guček K, Bohanec B, Avbelj M, Jerala R (2018) DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9:1594. https://doi.org/10.3389/fpls.2018.01594

    Article  Google Scholar 

  • Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T et al (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37(11):1344–1350

    Article  CAS  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(3):653–663

    Article  CAS  Google Scholar 

  • Schmitz DJ, Ali Z, Wang C, Aljedaani F, Hooykaas PJJ, Mahfouz M, de Pater S (2020) CRISPR/Cas9 mutagenesis by translocation of Cas9 protein into plant cells via the Agrobacterium Type IV secretion system. Front Genome Editin 2:6. https://doi.org/10.3389/fgeed.2020.00006

    Article  Google Scholar 

  • Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opn Biotechnol 32:47–53

    Article  CAS  Google Scholar 

  • Toda E, Koiso N, Takebayashi A, Ichikawa M, Kiba T, Osakabe K et al (2019) An efficient DNA-and selectable-marker-free genome-editing system using zygotes in rice. Nat Plants 5(4):363–368

    Article  CAS  Google Scholar 

  • Wang JW, Grandio EG, Newkirk GM, Demirer GS, Butrus S, Giraldo JP, Landry MP (2019) Nanoparticle-mediated genetic engineering of plants. Mol Plant 12(8):1037–1040

    Article  CAS  Google Scholar 

  • Wu S, Zhu H, Liu J, Yang Q, Shao X, Bi F et al (2020) Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biology 20(1):425. https://doi.org/10.1186/s12870-020-02609-8

    Article  CAS  Google Scholar 

  • Yu J, Tu L, Subburaj S, Bae S, Lee G-J (2021) Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Rep 40(6):1037–1045. https://doi.org/10.1007/s00299-020-02593-1

    Article  CAS  Google Scholar 

  • Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y et al (2019) Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants 5(5):480–485. https://doi.org/10.1038/s41477-019-0405-0

    Article  CAS  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35(5):438–440. https://doi.org/10.1038/nbt.3811

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorben Sprink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sprink, T., Hartung, F., Metje-Sprink, J. (2022). Transgene-Free Genome Editing in Plants. In: Wani, S.H., Hensel, G. (eds) Genome Editing. Springer, Cham. https://doi.org/10.1007/978-3-031-08072-2_8

Download citation

Publish with us

Policies and ethics