Skip to main content

Proteomic Biomarkers: What They Are and How Type 2 Diabetes Mellitus Has Similarities with Other Diseases

  • Reference work entry
  • First Online:
Biomarkers in Diabetes
  • 1110 Accesses

Abstract

Type 2 diabetes mellitus (T2DM) is the most frequent form of diabetes, characterized by insulin resistance and impaired insulin release. Its prevalence has shown remarkable expansion worldwide, particularly in low- and middle-income countries. Diabetic complications comprise kidney disease, retinopathy, and neuropathy. Moreover, metabolic, cardiovascular, and neurologic diseases have shared common pathways with T2DM. Proteomics is a technology involved in the quantification of overall proteins present in biological samples, as well as the study of their structures, functions, and interactions. Consequently, proteomics could be considered as the most relevant information to characterize a biological system and to propose new candidate biomarkers. This chapter goes on to discuss proteomic studies in order to characterize the T2DM profile, as well as the proteins commonly observed in T2DM, its complications, and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D PAGE:

Two-dimensional polyacrylamide gel electrophoresis

AD:

Alzheimer’s disease

AGEs:

Advanced glycation end products

Apo:

Apolipoprotein

CD163:

Scavenger receptor cysteine-rich type 1 protein M130

CFAH :

Complement factor H

CILP2:

Cartilage intermediate layer protein 2

CKD:

Chronic kidney disease

CTSD:

Cathepsin D

CVDs:

Cardiovascular diseases

DAF:

Decay-accelerating factor

DKD:

Diabetic kidney disease

DM:

Diabetes mellitus

eGFR:

Estimated glomerular filtration rate

eGPx:

Extracellular glutathione peroxidase

ELISA:

Enzyme-linked immunosorbent assays

GAL4:

Galectin-4

Hb1Ac:

Glycated hemoglobin A1c

HFpEF:

Heart failure with preserved ejection fraction

HOMA-IR:

Homeostatic model assessment of insulin resistance

IGFB2:

Insulin-like growth factor-binding protein 2

InR:

Insulin-like receptor

L1CAM:

L1 cell adhesion molecule

LC:

Liquid chromatography

MCI:

Mild cognitive impairment

MetS:

Metabolic syndrome

MMPs:

Matrix metalloproteinases

MS:

Mass spectrometry

mRNA:

Messenger ribonucleic acid

NAFLD:

Non-alcoholic fatty liver disease

NGAL:

Neutrophil gelatinase-associated lipocalin

OR:

Odds ratio

PAD:

Peripheral artery disease

PIP:

Prolactin-induced protein

PMCA:

Plasma membrane Ca + 2 ATPase

RLS:

Restless leg syndrome

STAT:

Signal transducer and activator of transcription

T2DM:

Type 2 diabetes mellitus

THBS2:

Thrombospondin-2

References

  • Abdulwahab RA, Alaiya A, Shinwari Z, et al. LC-MS/MS proteomic analysis revealed novel associations of 37 proteins with T2DM and notable upregulation of immunoglobulins. Int J Mol Med. 2019;43(5):2118–32.

    CAS  Google Scholar 

  • Ahn J, Kim B, Yu M, et al. Identification of diabetic nephropathy-selective proteins in human plasma by multi-lectin affinity chromatography and LC-MS/MS. Proteomics Clin Appl. 2010;4(6–7):644–53.

    CAS  Google Scholar 

  • Alfadda A, Benabdelkamel H, Masood A, et al. Proteomic analysis of mature adipocytes from obese patients in relation to aging. Exp Gerontol. 2013;48:1196–203.

    CAS  Google Scholar 

  • Alkhalaf A, Zürbig P, Bakker S, et al. Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy. PLoS One. 2010;5(10):e13421.

    Google Scholar 

  • Aslam B, Basit M, Nisar M, et al. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55(2):182–96.

    CAS  Google Scholar 

  • Avila-Vazquez M, Altamirano-Bustamante N, Altamirano-Bustamante M. Amyloid biomarkers in conformational diseases at face value: a systematic review. Molecules. 2017;23(1):79.

    Google Scholar 

  • Basso D, Greco E, Fogar P, et al. Pancreatic cancer-associated diabetes mellitus: an open field for proteomic applications. Clin Chim Acta. 2005;357(2):184–9.

    CAS  Google Scholar 

  • Bellei E, Rossi E, Lucchi L, et al. Proteomic analysis of early urinary biomarkers of renal changes in type 2 diabetic patients. Proteomics Clin Appl. 2008;2(4):478–91.

    CAS  Google Scholar 

  • Chee C, Chang K, Loke M, et al. Association of potential salivary biomarkers with diabetic retinopathy and its severity in type-2 diabetes mellitus: a proteomic analysis by mass spectrometry. Peer J. 2016;4:e2022.

    Google Scholar 

  • Cheema A, Kaur P, Fadel A, et al. Integrated datasets of proteomic and metabolomic biomarkers to predict its impacts on comorbidities of Type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2020;13:2409–31.

    CAS  Google Scholar 

  • Chen Z, Gerszten R. Metabolomics and proteomics in type 2 diabetes. Circ Res. 2020;126(11):1613–27.

    CAS  Google Scholar 

  • Conserva F, Pontrelli P, Accetturo M, et al. The pathogenesis of diabetic nephropathy: focus on microRNAs and proteomics. J Nephrol. 2013;26(5):811–20.

    Google Scholar 

  • Elhadad M, Wilson R, Zaghlool S, et al. Metabolic syndrome and the plasma proteome: from association to causation. Cardiovasc Diabetol. 2021;20(1):111.

    CAS  Google Scholar 

  • Fang L, Kojima K, Zhou L, et al. Analysis of the human proteome in subcutaneous and visceral fat depots in diabetic and non-diabetic patients with morbid obesity. J Proteomics Bioinform. 2015;8(6):133–41.

    Google Scholar 

  • Fogar P, Pasquali C, Basso D, et al. Diabetes mellitus in pancreatic cancer follow-up. Anticancer Res. 1994;14:2827–30.

    CAS  Google Scholar 

  • García-Fontana B, Morales-Santana S, Longobardo V, et al. Relationship between proinflammatory and antioxidant proteins with the severity of cardiovascular disease in Type 2 diabetes mellitus. Int J Mol Sci. 2015;16(5):9469–83.

    Google Scholar 

  • Gholizadeh E, Khaleghian A, Najafgholi Seyfi D, et al. Showing NAFLD, as a key connector disease between Alzheimer’s disease and diabetes via analysis of systems biology. Gastroenterol Hepatol Bed Bench. 2020;13(Suppl1):S89–97.

    Google Scholar 

  • Golea-Secara A, Munteanu C, Sarbu M, et al. Urinary proteins detected using modern proteomics intervene in early type 2 diabetic kidney disease – a pilot study. Biomark Med. 2020;14(16):1521–36.

    CAS  Google Scholar 

  • Hanff T, Cohen J, Zhao L, et al. Quantitative proteomic analysis of diabetes mellitus in heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2021;6(2):89–99.

    Google Scholar 

  • Ising E, Åhrman E, Thomsen N, et al. Quantitative proteomic analysis of human peripheral nerves from subjects with type 2 diabetes. Diabet Med. 2021;26:e14658.

    Google Scholar 

  • Jim B, Ghanta M, Qipo A, et al. Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study. PLoS One. 2012;7(5):e36041.

    CAS  Google Scholar 

  • Jin J, Ku Y, Kim Y, et al. Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients. Exp Diabetes Res. 2012;2012:168602.

    Google Scholar 

  • Jin J, Min H, Kim S, et al. Development of diagnostic biomarkers for detecting diabetic retinopathy at early stages using quantitative proteomics. J Diabetes Res. 2016;2016:6571976.

    Google Scholar 

  • Kienhorst L, van Lochem E, Kievit W, et al. Gout is a chronic inflammatory disease in which high levels of Interleukin-8 (CXCL8), myeloid-related protein 8/myeloid-related protein 14 complex, and an altered proteome are associated with diabetes mellitus and cardiovascular disease. Arthritis Rheum. 2015;67(12):3303–13.

    CAS  Google Scholar 

  • Kim H, Cho E, Yoo J, et al. Proteome analysis of serum from type 2 diabetics with nephropathy. J Proteome Res. 2007;6(2):735–43.

    CAS  Google Scholar 

  • Kim S, Choi J, Yun J, et al. Proteomics approach to identify serum biomarkers associated with the pro-gression of diabetes in Korean patients with abdominal obesity. PLoS One. 2019;14:e0222032.

    CAS  Google Scholar 

  • Kr€uger M, Kratchmarova I, Blagoev B, et al. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci U S A. 2008;105:2451–6.

    Google Scholar 

  • Kraniotou C, Karadima V, Bellos G, et al. Predictive biomarkers for type 2 of diabetes mellitus: Bridging the gap between systems research and personalized medicine. J Proteome. 2018;188:59–62.

    CAS  Google Scholar 

  • Krisp C, Jacobsen F, McKay M, et al. Proteome analysis reveals antiangiogenic environments in chronic wounds of diabetes mellitus type 2 patients. Proteomics. 2013;13(17):2670–81.

    CAS  Google Scholar 

  • Liu Y, Hu S, Wu Z, et al. Proteomic analysis of human serum from diabetic retinopathy. Int J Ophthalmol. 2011;4(6):616–22.

    Google Scholar 

  • López-Villar E, Martos-Moreno G, Chowen J, et al. A proteomic approach to obesity and type 2 diabetes. J Cell Mol Med. 2015;19(7):1455–70.

    Google Scholar 

  • Maahs D, Siwy J, Argilés A, et al. Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology. PLoS One. 2010;5(9):e13051.

    Google Scholar 

  • McCarthy C, Shrestha S, Ibrahim N, et al. Performance of a clinical/proteomic panel to predict obstructive peripheral artery disease in patients with and without diabetes mellitus. Open Heart. 2019;6(1):e000955.

    Google Scholar 

  • Meng Q, Ge S, Yan W, et al. Screening for potential serum-based proteomic biomarkers for human type 2 diabetes mellitus using MALDI-TOF MS. Proteomics Clin Appl. 2017;11(3–4):1–34

    Google Scholar 

  • Merchant M, Klein J. Proteomics and diabetic nephropathy. Curr Diab Rep. 2005;5(6):464–9.

    CAS  Google Scholar 

  • Midena E, Frizziero L, Midena G, et al. Intraocular fluid biomarkers (liquid biopsy) in human diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2021;259:3549–356.

    Google Scholar 

  • Mirza Z, Ali A, Ashraf G. Proteomics approaches to understand linkage between Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets. 2014;13(2):213–25.

    CAS  Google Scholar 

  • Moin A, Kahal H, Al-Qaissi A, et al. Amyloid-related protein changes associated with dementia differ according to severity of hypoglycemia. BMJ Open Diabetes Res Care. 2021;9(1):e002211.

    Google Scholar 

  • Molvin J, Jujić A, Melander O, et al. Proteomic exploration of common pathophysiological pathways in diabetes and cardiovascular disease. ESC Heart Fail. 2020;7(6):4151–8.

    Google Scholar 

  • Mondello S, Kobeissy F, Mechref Y, et al. Searching for novel candidate biomarkers of RLS in blood by proteomic analysis. Nat Sci Sleep. 2021;13:873–83.

    Google Scholar 

  • Nicolls M, D’Antonio J, Hutton J. Proteomics as a tool for discovery: proteins implicated in Alzheimer’s disease are highly expressed in normal pancreatic islets. J Proteome Res. 2003;2(2):199–205.

    CAS  Google Scholar 

  • Noordam R, van Heemst D, Suhre K, et al. Proteome-wide assessment of diabetes mellitus in Qatari identifies IGFBP-2 as a risk factor already with early glycaemic disturbances. Arch Biochem Biophys. 2020;689:108476.

    CAS  Google Scholar 

  • Nowak C, Sundström J, Gustafsson S, et al. Protein biomarkers for insulin resistance and type 2 diabetes risk in two large community cohorts. Diabetes. 2016;65:276–84.

    CAS  Google Scholar 

  • Organization – Global report on Diabetes 2021. https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed on August 6, 2021.

  • Papale M, Di Paolo S, Magistroni R, et al. Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care. 2010;33(11):2409–15.

    CAS  Google Scholar 

  • Pereira J, Fraga V, Santos A, et al. Alzheimer’s disease and type 2 diabetes mellitus: a systematic review of proteomic studies. J Neurochem. 2021;156(6):753–76.

    Google Scholar 

  • Preil S, Kristensen L, Beck H, et al. Quantitative proteome analysis reveals increased content of basement membrane proteins in arteries from patients with Type 2 diabetes mellitus and lower levels among metformin users. Circ Cardiovasc Genet. 2015;8(5):727–35.

    CAS  Google Scholar 

  • Riaz S, Alam S, Akhtar M. Proteomic identification of human serum biomarkers in diabetes mellitus type 2. J Pharm Biomed Anal. 2010a;51(5):1103–7.

    CAS  Google Scholar 

  • Riaz S, Alam S, Srai S, et al. Proteomic identification of human urinary biomarkers in diabetes mellitus type 2. Diabetes Technol Ther. 2010b;12(12):979–88.

    CAS  Google Scholar 

  • Santos A, Fraga V, Magalhães C, et al. Doença de Alzheimer e diabetes mellitus tipo 2: qual a relação? Rev Bras Neurol. 2017;53(4):17–26.

    Google Scholar 

  • Sohail W, Majeed F, Afroz A. Differential proteome analysis of diabetes mellitus type 2 and its pathophysiological complications. Diabetes Metab Syndr. 2018;12(6):1125–31.

    Google Scholar 

  • Szerlip H, Edwards M, Williams B. Association between cognitive impairment and chronic kidney disease in Mexican Americans. J Am Geriatr Soc. 2015;63(10):2023–8.

    Google Scholar 

  • Tans R, Verschuren L, Wessels H, et al. The future of protein biomarker research in type 2 diabetes mellitus. Expert Rev Proteomics. 2019;16(2):105–15.

    CAS  Google Scholar 

  • Valle A, Catalán V, Rodríguez A, et al. Identification of liver proteins altered by type 2 diabetes mellitus in obese subjects. Liver Int. 2012;32(6):951–61.

    CAS  Google Scholar 

  • Wang W, Liu X, Liu L, et al. Identification of proteins implicated in the development of pancreatic cancer-associated diabetes mellitus by iTRAQ-based quantitative proteomics. J Proteome. 2013;12(84):52–60.

    CAS  Google Scholar 

  • Xiao H, Xin W, Sun L, et al. Comprehensive proteomic profiling of aqueous humor proteins in proliferative diabetic retinopathy. Transl Vis Sci Technol. 2021;10(6):3.

    Google Scholar 

  • Yeh S, Chang W, Chuang H, et al. Differentiation of type 2 diabetes mellitus with different complications by proteomic analysis of plasma low abundance proteins. J Diabetes Metab Disord. 2016;15:24.

    Google Scholar 

  • Zarch S, Tezerjani M, Talebi M, et al. Molecular biomarkers in diabetes mellitus (DM). Med J Islam Repub Iran. 2020;34:28.

    Google Scholar 

  • Zhang Z, Wu S, Stenoien D, et al. High-throughput proteomics. Annu Rev Anal Chem (Palo Alto, Calif). 2014;7:427–54.

    CAS  Google Scholar 

  • Zhao L, Zhang Y, Liu F et al. Urinary complement proteins and risk of end-stage renal disease: quantitative urinary proteomics in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. J Endocrinol Investig. 2021;44:2709–2723.

    Google Scholar 

  • Zürbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61(12):3304–3313.58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Braga Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gomes, K.B. (2023). Proteomic Biomarkers: What They Are and How Type 2 Diabetes Mellitus Has Similarities with Other Diseases. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Diabetes. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-08014-2_16

Download citation

Publish with us

Policies and ethics