Skip to main content

Proteomics and Islet Research

  • Living reference work entry
  • First Online:
Islets of Langerhans, 2. ed.
  • 163 Accesses

Abstract

Almost a decade has elapsed since the contemporary scientists, fascinated by the promising possibilities of proteomics, conducted extensive proteomic studies to unlock the secret of islet biology in the pathogenesis of diabetes. In recent years, proteomics has been revolutionized by the successful application of improved techniques such as 2D gel-based proteomics, mass spectrometric techniques, protein arrays, nanotechnology, and single-cell proteomics. These techniques have tremendous potential for biomarker development, target validation, diagnosis, prognosis, and optimization of treatment in medical care, especially in the field of islet and diabetes research. This chapter will highlight the contributions of proteomic technologies towards the dissection of complex network of signaling molecules regulating islet function, the identification of potential biomarkers, and the understanding of mechanisms involved in the pathogenesis of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott A (1999) A post-genomic challenge: learning to read patterns of protein synthesis. Nature 402:715–720

    CAS  PubMed  Google Scholar 

  • Adam BL, Vlahou A, Semmes OJ, Wright GL Jr (2001) Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics 1:1264–1270

    CAS  PubMed  Google Scholar 

  • Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    CAS  PubMed  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    CAS  PubMed  Google Scholar 

  • Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5:112–120

    CAS  PubMed  Google Scholar 

  • Ahmed M, Bergsten P (2005) Glucose-induced changes of multiple mouse islet proteins analysed by two-dimensional gel electrophoresis and mass spectrometry. Diabetologia 48:477–485

    CAS  PubMed  Google Scholar 

  • Ahmed M, Forsberg J, Bergsten P (2005a) Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 4:931–940

    CAS  PubMed  Google Scholar 

  • Ahmed M, Bergsten P, McCarthy M, Rorsman P (2005b) Protein profiling of INS-1E cells by two-dimensional gel electrophoresis and mass spectrometry. Diabetologia 48(A):162

    Google Scholar 

  • Alge CS, Suppmann S, Priglinger SG, Neubauer AS, May CA, Hauck S, Welge-Lussen U, Ueffing M, Kampik A (2003) Comparative proteome analysis of native differentiated and cultured dedifferentiated human RPE cells. Invest Ophthalmol Vis Sci 44:3629–3641

    PubMed  Google Scholar 

  • America AH, Cordewener JH (2008) Comparative LC-MS: a landscape of peaks and valleys. Proteomics 8:731–749

    CAS  PubMed  Google Scholar 

  • Anchoori RK, Kortenhorst MS, Hidalgo M, Sarkar T, Hallur G, Bai R, Diest PJ, Hamel E, Khan SR (2008) Novel microtubule-interacting phenoxy pyridine and phenyl sulfanyl pyridine analogues for cancer therapy. J Med Chem 51:5953–5957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen HU, Larsen PM, Fey SJ, Karlsen AE, Mandrup-Poulsen T, Nerup J (1995) Two-dimensional gel electrophoresis of rat islet proteins. Interleukin 1 beta-induced changes in protein expression are reduced by L-arginine depletion and nicotinamide. Diabetes 44:400–407

    CAS  PubMed  Google Scholar 

  • Andersen HU, Fey SJ, Larsen PM, Nawrocki A, Hejnaes KR, Mandrup-Poulsen T, Nerup J (1997) Interleukin-1beta induced changes in the protein expression of rat islets: a computerized database. Electrophoresis 18:2091–2103

    CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    CAS  PubMed  Google Scholar 

  • Anderson NG, Matheson A, Anderson NL (2001) Back to the future: the human protein index (HPI) and the agenda for post-proteomic biology. Proteomics 1:3–12

    CAS  PubMed  Google Scholar 

  • Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41:3912–3928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Assimacopoulos-Jeannet F, Thumelin S, Roche E, Esser V, McGarry JD, Prentki M (1997) Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic β-cell line INS-1. J Biol Chem 272:1659–1664

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beltran L, Cutillas PR (2012) Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 43:1009–1024

    CAS  PubMed  Google Scholar 

  • Bergholdt R, Storling ZM, Lage K, Karlberg EO, Olason PI, Aalund M, Nerup J, Brunak S, Workman CT, Pociot F (2007) Integrative analysis for finding genes and networks involved in diabetes and other complex diseases. Genome Biol 8:R253

    PubMed Central  PubMed  Google Scholar 

  • Bergsten P, Hellman B (1993) Glucose-induced cycles of insulin release can be resolved into distinct periods of secretory activity. Biochem Biophys Res Commun 192:1182–1188

    CAS  PubMed  Google Scholar 

  • Bertone P, Snyder M (2005) Advances in functional protein microarray technology. FEBS J 272:5400–5411

    CAS  PubMed  Google Scholar 

  • Bhathena SJ, Timmers KI, Oie HK, Voyles NR, Recant L (1985) Cytosolic insulin-degrading activity in islet-derived tumor cell lines and in normal rat islets. Diabetes 34:121–128

    CAS  PubMed  Google Scholar 

  • Binz PA, Muller M, Hoogland C, Zimmermann C, Pasquarello C, Corthals G, Sanchez JC, Hochstrasser DF, Appel RD (2004) The molecular scanner: concept and developments. Curr Opin Biotechnol 15:17–23

    CAS  PubMed  Google Scholar 

  • Blessing M, Ruther U, Franke WW (1993) Ectopic synthesis of epidermal cytokeratins in pancreatic islet cells of transgenic mice interferes with cytoskeletal order and insulin production. J Cell Biol 120:743–755

    CAS  PubMed  Google Scholar 

  • Boden G, Chen X (1999) Effects of fatty acids and ketone bodies on basal insulin secretion in type 2 diabetes. Diabetes 48:577–583

    CAS  PubMed  Google Scholar 

  • Boden G, Chen X, Rosner J, Barton M (1995) Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes 44:1239–1242

    CAS  PubMed  Google Scholar 

  • Briaud I, Harmon JS, Kelpe CL, Segu VB, Poitout V (2001) Lipotoxicity of the pancreatic β-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes 50:315–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunner Y, Coute Y, Iezzi M, Foti M, Fukuda M, Hochstrasser DF, Wollheim CB, Sanchez JC (2007) Proteomics analysis of insulin secretory granules. Mol Cell Proteomics 6:1007–1017

    CAS  PubMed  Google Scholar 

  • Buckingham RE, Al-Barazanji KA, Toseland CD, Slaughter M, Connor SC, West A, Bond B, Turner NC, Clapham JC (1998) Peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes 47:1326–1334

    CAS  PubMed  Google Scholar 

  • Busch AK, Cordery D, Denyer GS, Biden TJ (2002) Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic β-cell function. Diabetes 51:977–987

    CAS  PubMed  Google Scholar 

  • Cahill DJ, Nordhoff E, O’Brien J, Klose J, Eickhoff H, Lehrach H (2001) Bridging genomics and proteomics. In: Pennington SR, Dunn MJ (eds) Proteomics: from protein sequence to function. BIOS Scientific Publishers Ltd, Oxford, pp 1–22

    Google Scholar 

  • Campillo JE, Luyckx AS, Torres MD, Lefebvre PJ (1979) Effect of oleic acid on insulin secretion by the isolated perfused rat pancreas. Diabetologia 16:267–273

    CAS  PubMed  Google Scholar 

  • Canas B, Lopez-Ferrer D, Ramos-Fernandez A, Camafeita E, Calvo E (2006) Mass spectrometry technologies for proteomics. Brief Funct Genomic Proteomic 4:295–320

    CAS  PubMed  Google Scholar 

  • Carpentier A, Mittelman SD, Lamarche B, Bergman RN, Giacca A, Lewis GF (1999) Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol 276:E1055–E1066

    CAS  PubMed  Google Scholar 

  • Celis JE, Ostergaard M, Jensen NA, Gromova I, Rasmussen HH, Gromov P (1998) Human and mouse proteomic databases: novel resources in the protein universe. FEBS Lett 430:64–72

    CAS  PubMed  Google Scholar 

  • Chan CB, Saleh MC, Koshkin V, Wheeler MB (2004) Uncoupling protein 2 and islet function. Diabetes 53(Suppl 1):S136–S142

    CAS  PubMed  Google Scholar 

  • Chao TC, Hansmeier N (2013) Microfluidic devices for high-throughput proteome analyses. Proteomics 13:467–479

    CAS  PubMed  Google Scholar 

  • Chapal N, Molina L, Molina F, Laplanche M, Pau B, Petit P (2004) Pharmacoproteomic approach to the study of drug mode of action, toxicity, and resistance: applications in diabetes and cancer. Fundam Clin Pharmacol 18:413–422

    CAS  PubMed  Google Scholar 

  • Chen MC, Schuit F, Eizirik DL (1999) Identification of IL-1β-induced messenger RNAs in rat pancreatic beta cells by differential display of messenger RNA. Diabetologia 42:1199–1203

    CAS  PubMed  Google Scholar 

  • Chiu DT (2010) Interfacing droplet microfluidics with chemical separation for cellular analysis. Anal Bioanal Chem 397:3179–3183

    CAS  PubMed  Google Scholar 

  • Collins HW, Buettger C, Matschinsky F (1990) High-resolution two-dimensional polyacrylamide gel electrophoresis reveals a glucose-response protein of 65 kDa in pancreatic islet cells. Proc Natl Acad Sci U S A 87:5494–5498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collins H, Najafi H, Buettger C, Rombeau J, Settle RG, Matschinsky FM (1992) Identification of glucose response proteins in two biological models of β-cell adaptation to chronic high glucose exposure. J Biol Chem 267:1357–1366

    CAS  PubMed  Google Scholar 

  • Cretich M, Damin F, Pirri G, Chiari M (2006) Protein and peptide arrays: recent trends and new directions. Biomol Eng 23:77–88

    CAS  PubMed  Google Scholar 

  • Dobbins RL, Szczepaniak LS, Myhill J, Tamura Y, Uchino H, Giacca A, McGarry JD (2002) The composition of dietary fat directly influences glucose-stimulated insulin secretion in rats. Diabetes 51:1825–1833

    CAS  PubMed  Google Scholar 

  • Domon B, Broder S (2004) Implications of new proteomics strategies for biology and medicine. J Proteome Res 3:253–260

    CAS  PubMed  Google Scholar 

  • Dowling P, O’Driscoll L, O’Sullivan F, Dowd A, Henry M, Jeppesen PB, Meleady P, Clynes M (2006) Proteomic screening of glucose-responsive and glucose non-responsive MIN-6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics 6:6578–6587

    CAS  PubMed  Google Scholar 

  • Efanov AM, Zaitsev SV, Mest HJ, Raap A, Appelskog IB, Larsson O, Berggren PO, Efendic S (2001) The novel imidazoline compound BL11282 potentiates glucose-induced insulin secretion in pancreatic β-cells in the absence of modulation of KATP channel activity. Diabetes 50:797–802

    CAS  PubMed  Google Scholar 

  • Eizirik DL, Mandrup-Poulsen T (2001) A choice of death – the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133

    CAS  PubMed  Google Scholar 

  • Eizirik DL, Korbutt GS, Hellerstrom C (1992) Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the β-cell function. J Clin Invest 90:1263–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, Joly E, Dbaibo G, Rosenberg L, Prentki M (2003) Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death. Endocrinology 144:4154–4163

    CAS  PubMed  Google Scholar 

  • Espina V, Mehta AI, Winters ME, Calvert V, Wulfkuhle J, Petricoin EF 3rd, Liotta LA (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3:2091–2100

    CAS  PubMed  Google Scholar 

  • Ezzell C (2002) Proteins rule. Sci Am 286:40–47

    PubMed  Google Scholar 

  • Farina V, Zedda M (1992) On the expression of cytokeratins and their distribution in some rabbit gland tissues. Eur J Histochem 36:479–488

    CAS  PubMed  Google Scholar 

  • Fenselau C (2007) A review of quantitative methods for proteomic studies. J Chromatogr B Analyt Technol Biomed Life Sci 855:14–20

    CAS  PubMed  Google Scholar 

  • Fernandez C, Fransson U, Hallgard E, Spegel P, Holm C, Krogh M, Warell K, James P, Mulder H (2008) Metabolomic and proteomic analysis of a clonal insulin-producing β-cell line (INS-1 832/13). J Proteome Res 7:400–411

    CAS  PubMed  Google Scholar 

  • Fields S (2005) High-throughput two-hybrid analysis. The promise and the peril. FEBS J 272:5391–5399

    CAS  PubMed  Google Scholar 

  • Figeys D (2003) Proteomics in 2002: a year of technical development and wide-ranging applications. Anal Chem 75:2891–2905

    CAS  PubMed  Google Scholar 

  • Fila J, Honys D (2012) Enrichment techniques employed in phosphoproteomics. Amino Acids 43:1025–1047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Florens L, Washburn MP (2006) Proteomic analysis by multidimensional protein identification technology. Methods Mol Biol 328:159–175

    CAS  PubMed  Google Scholar 

  • Francini F, Del Zotto H, Gagliardino JJ (2001) Effect of an acute glucose overload on Islet cell morphology and secretory function in the toad. Gen Comp Endocrinol 122:130–138

    CAS  PubMed  Google Scholar 

  • Geho D, Lahar N, Gurnani P, Huebschman M, Herrmann P, Espina V, Shi A, Wulfkuhle J, Garner H, Petricoin E 3rd, Liotta LA, Rosenblatt KP (2005) Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjug Chem 16:559–566

    CAS  PubMed  Google Scholar 

  • Goberna R, Tamarit J Jr, Osorio J, Fussganger R, Tamarit J, Pfeiffer EF (1974) Action of B-hydroxy butyrate, acetoacetate and palmitate on the insulin release in the perfused isolated rat pancreas. Horm Metab Res 6:256–260

    CAS  PubMed  Google Scholar 

  • Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    CAS  PubMed  Google Scholar 

  • Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    PubMed  Google Scholar 

  • Gravena C, Mathias PC, Ashcroft SJ (2002) Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J Endocrinol 173:73–80

    CAS  PubMed  Google Scholar 

  • Graves PR, Haystead TA (2003) A functional proteomics approach to signal transduction. Recent Prog Horm Res 58:1–24

    CAS  PubMed  Google Scholar 

  • Guest PC, Bailyes EM, Rutherford NG, Hutton JC (1991) Insulin secretory granule biogenesis. Co-ordinate regulation of the biosynthesis of the majority of constituent proteins. Biochem J 274(Pt 1):73–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han D, Moon S, Kim H, Choi SE, Lee SJ, Park KS, Jun H, Kang Y, Kim Y (2011) Detection of differential proteomes associated with the development of type 2 diabetes in the Zucker rat model using the iTRAQ technique. J Proteome Res 10:564–577

    CAS  PubMed  Google Scholar 

  • Han D, Moon S, Kim Y, Ho WK, Kim K, Kang Y, Jun H, Kim Y (2012) Comprehensive phosphoproteome analysis of INS-1 pancreatic beta-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. J Proteome Res 11:2206–2223

    CAS  PubMed  Google Scholar 

  • Heimberg H, De Vos A, Pipeleers D, Thorens B, Schuit F (1995) Differences in glucose transporter gene expression between rat pancreatic α- and β-cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem 270:8971–8975

    CAS  PubMed  Google Scholar 

  • Hoogland C, Sanchez JC, Walther D, Baujard V, Baujard O, Tonella L, Hochstrasser DF, Appel RD (1999) Two-dimensional electrophoresis resources available from ExPASy. Electrophoresis 20:3568–3571

    CAS  PubMed  Google Scholar 

  • Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28:730–738

    CAS  PubMed  Google Scholar 

  • Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70:375–387

    CAS  PubMed  Google Scholar 

  • Hutton JC, Penn EJ, Peshavaria M (1982) Isolation and characterisation of insulin secretory granules from a rat islet cell tumour. Diabetologia 23:365–373

    CAS  PubMed  Google Scholar 

  • Issaq HJ, Veenstra TD, Conrads TP, Felschow D (2002) The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun 292:587–592

    CAS  PubMed  Google Scholar 

  • Jagerbrink T, Lexander H, Palmberg C, Shafqat J, Sharoyko V, Berggren PO, Efendic S, Zaitsev S, Jornvall H (2007) Differential protein expression in pancreatic islets after treatment with an imidazoline compound. Cell Mol Life Sci 64:1310–1316

    CAS  PubMed  Google Scholar 

  • Janzi M, Odling J, Pan-Hammarstrom Q, Sundberg M, Lundeberg J, Uhlen M, Hammarstrom L, Nilsson P (2005) Serum microarrays for large scale screening of protein levels. Mol Cell Proteomics 4:1942–1947

    CAS  PubMed  Google Scholar 

  • Jestin JL (2008) Functional cloning by phage display. Biochimie 90:1273–1278

    CAS  PubMed  Google Scholar 

  • Jia L, Lu Y, Shao J, Liang XJ, Xu Y (2013) Nanoproteomics: a new sprout from emerging links between nanotechnology and proteomics. Trends Biotechnol 31:99–107

    CAS  PubMed  Google Scholar 

  • Jiang L, Brackeva B, Stange G, Verhaeghen K, Costa O, Couillard-Despres S, Rotheneichner P, Aigner L, Van Schravendijk C, Pipeleers D, Ling Z, Gorus F, Martens GA (2013) LC-MS/MS identification of doublecortin as abundant beta cell-selective protein discharged by damaged beta cells in vitro. J Proteomics 80:268–280

    CAS  PubMed  Google Scholar 

  • Jin J, Park J, Kim K, Kang Y, Park SG, Kim JH, Park KS, Jun H, Kim Y (2009) Detection of differential proteomes of human β-cells during islet-like differentiation using iTRAQ labeling. J Proteome Res 8:1393

    CAS  PubMed  Google Scholar 

  • John NE, Andersen HU, Fey SJ, Larsen PM, Roepstorff P, Larsen MR, Pociot F, Karlsen AE, Nerup J, Green IC, Mandrup-Poulsen T (2000) Cytokine- or chemically derived nitric oxide alters the expression of proteins detected by two-dimensional gel electrophoresis in neonatal rat islets of Langerhans. Diabetes 49:1819–1829

    CAS  PubMed  Google Scholar 

  • Jones PM, Persaud SJ (1998) Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic β-cells. Endocrinol Rev 19:429–461

    CAS  Google Scholar 

  • Joseph JW, Koshkin V, Saleh MC, Sivitz WI, Zhang CY, Lowell BB, Chan CB, Wheeler MB (2004) Free fatty acid-induced β-cell defects are dependent on uncoupling protein 2 expression. J Biol Chem 279:51049–51056

    CAS  PubMed  Google Scholar 

  • Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK (2006) Antidiabetic agents from medicinal plants. Curr Med Chem 13:1203–1218

    CAS  PubMed  Google Scholar 

  • Kaku K, Province M, Permutt MA (1989) Genetic analysis of obesity-induced diabetes associated with a limited capacity to synthesize insulin in C57BL/KS mice: evidence for polygenic control. Diabetologia 32:636–643

    CAS  PubMed  Google Scholar 

  • Karlsen AE, Sparre T, Nielsen K, Nerup J, Pociot F (2001) Proteome analysis – a novel approach to understand the pathogenesis of type 1 diabetes mellitus. Dis Markers 17:205–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasper M, von Dorsche H, Stosiek P (1991) Changes in the distribution of intermediate filament proteins and collagen IV in fetal and adult human pancreas. I. Localization of cytokeratin polypeptides. Histochemistry 96:271–277

    CAS  PubMed  Google Scholar 

  • Kelly RT, Tang K, Irimia D, Toner M, Smith RD (2008) Elastomeric microchip electrospray emitter for stable cone-jet mode operation in the nanoflow regime. Anal Chem 80:3824–3831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly RT, Page JS, Marginean I, Tang K, Smith RD (2009) Dilution-free analysis from picoliter droplets by nano-electrospray ionization mass spectrometry. Angew Chem Int Ed Engl 48:6832–6835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiehntopf M, Siegmund R, Deufel T (2007) Use of SELDI-TOF mass spectrometry for identification of new biomarkers: potential and limitations. Clin Chem Lab Med 45:1435–1449

    CAS  PubMed  Google Scholar 

  • Kikuchi T, Carbone DP (2007) Proteomics analysis in lung cancer: challenges and opportunities. Respirology 12:22–28

    PubMed  Google Scholar 

  • Kim HS, Lee MS (2009) Role of innate immunity in triggering and tuning of autoimmune diabetes. Curr Mol Med 9:30–44

    CAS  PubMed  Google Scholar 

  • Kim EK, Kwon KB, Koo BS, Han MJ, Song MY, Song EK, Han MK, Park JW, Ryu DG, Park BH (2007) Activation of peroxisome proliferator-activated receptor-γ protects pancreatic β-cells from cytokine-induced cytotoxicity via NFκB pathway. Int J Biochem Cell Biol 39:1260–1275

    CAS  PubMed  Google Scholar 

  • Kim SW, Hwang HJ, Baek YM, Lee SH, Hwang HS, Yun JW (2008) Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatments. Proteomics 8:2344–2361

    CAS  PubMed  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    CAS  PubMed  Google Scholar 

  • Kohnke R, Mei J, Park M, York DA, Erlanson-Albertsson C (2007) Fatty acids and glucose in high concentration down-regulates ATP synthase β-subunit protein expression in INS-1 cells. Nutr Neurosci 10:273–278

    PubMed  Google Scholar 

  • Korsgren O, Jansson L, Sandler S, Andersson A (1990) Hyperglycemia-induced B cell toxicity. The fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background. J Clin Invest 86:2161–2168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kusnezow W, Hoheisel JD (2002) Antibody microarrays: promises and problems. Biotechniques 33(Suppl):14–23

    Google Scholar 

  • Lalonde S, Ehrhardt DW, Loque D, Chen J, Rhee SY, Frommer WB (2008) Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. Plant J 53:610–635

    CAS  PubMed  Google Scholar 

  • Lameloise N, Muzzin P, Prentki M, Assimacopoulos-Jeannet F (2001) Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion. Diabetes 50:803–809

    CAS  PubMed  Google Scholar 

  • Larsen PM, Fey SJ, Larsen MR, Nawrocki A, Andersen HU, Kahler H, Heilmann C, Voss MC, Roepstorff P, Pociot F, Karlsen AE, Nerup J (2001) Proteome analysis of interleukin-1β-induced changes in protein expression in rat islets of Langerhans. Diabetes 50:1056–1063

    CAS  PubMed  Google Scholar 

  • Leahy JL, Cooper HE, Deal DA, Weir GC (1986) Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J Clin Invest 77:908–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang Y, Najafi H, Smith RM, Zimmerman EC, Magnuson MA, Tal M, Matschinsky FM (1992) Concordant glucose induction of glucokinase, glucose usage, and glucose-stimulated insulin release in pancreatic islets maintained in organ culture. Diabetes 41:792–806

    CAS  PubMed  Google Scholar 

  • Lin JM, Sternesjo J, Sandler S, Bergsten P (1999) Preserved pulsatile insulin release from prediabetic mouse islets. Endocrinology 140:3999–4004

    CAS  PubMed  Google Scholar 

  • Lin CY, Gurlo T, Haataja L, Hsueh WA, Butler PC (2005) Activation of peroxisome proliferator-activated receptor-γ by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3′-kinase-dependent pathway. J Clin Endocrinol Metab 90:6678–6686

    CAS  PubMed  Google Scholar 

  • Ling Z, Hannaert JC, Pipeleers D (1994) Effect of nutrients, hormones and serum on survival of rat islet beta cells in culture. Diabetologia 37:15–21

    CAS  PubMed  Google Scholar 

  • Lopez JL (2007) Two-dimensional electrophoresis in proteome expression analysis. J Chromatogr B Analyt Technol Biomed Life Sci 849:190–202

    CAS  PubMed  Google Scholar 

  • Lu H, Yang Y, Allister EM, Wijesekara N, Wheeler MB (2008) The identification of potential factors associated with the development of type 2 diabetes: a quantitative proteomics approach. Mol Cell Proteomics 7:1434–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F (1968) Stimulation of insulin secretion by noncarbohydrate metabolites. J Lab Clin Med 72:438–448

    CAS  PubMed  Google Scholar 

  • Manco M, Calvani M, Mingrone G (2004) Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab 6:402–413

    CAS  PubMed  Google Scholar 

  • Mandrup-Poulsen T (2001) β-cell apoptosis: stimuli and signaling. Diabetes 50(Suppl 1):S58–S63

    CAS  PubMed  Google Scholar 

  • Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    CAS  PubMed  Google Scholar 

  • Maris M, Waelkens E, Cnop M, D’Hertog W, Cunha DA, Korf H, Koike T, Overbergh L, Mathieu C (2011) Oleate-induced beta cell dysfunction and apoptosis: a proteomic approach to glucolipotoxicity by an unsaturated fatty acid. J Proteome Res 10:3372–3385

    CAS  PubMed  Google Scholar 

  • Maris M, Robert S, Waelkens E, Derua R, Hernangomez MH, D’Hertog W, Cnop M, Mathieu C, Overbergh L (2013) Role of the saturated nonesterified fatty acid palmitate in beta cell dysfunction. J Proteome Res 12:347–362

    CAS  PubMed  Google Scholar 

  • Mason TM, Goh T, Tchipashvili V, Sandhu H, Gupta N, Lewis GF, Giacca A (1999) Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats. Diabetes 48:524–530

    CAS  PubMed  Google Scholar 

  • Massa O, Alessio M, Russo L, Nardo G, Bonetto V, Bertuzzi F, Paladini A, Iafusco D, Patera P, Federici G, Not T, Tiberti C, Bonfanti R, Barbetti F (2013) Serological Proteome Analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes. J Proteomics 82:263–273

    CAS  PubMed  Google Scholar 

  • Maurya P, Meleady P, Dowling P, Clynes M (2007) Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res 27:1247–1255

    CAS  PubMed  Google Scholar 

  • Maziarz M, Chung C, Drucker DJ, Emili A (2005) Integrating global proteomic and genomic expression profiles generated from islet α cells: opportunities and challenges to deriving reliable biological inferences. Mol Cell Proteomics 4:458–474

    CAS  PubMed  Google Scholar 

  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    CAS  PubMed  Google Scholar 

  • Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization- time of flight-mass spectrometry. Electrophoresis 21:1164–1177

    CAS  PubMed  Google Scholar 

  • Messana I, Cabras T, Iavarone F, Vincenzoni F, Urbani A, Castagnola M (2013) Unraveling the different proteomic platforms. J Sep Sci 36:128–139

    CAS  PubMed  Google Scholar 

  • Metz TO, Jacobs JM, Gritsenko MA, Fontes G, Qian WJ, Camp DG 2nd, Poitout V, Smith RD (2006) Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS. J Proteome Res 5:3345–3354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minerva L, Clerens S, Baggerman G, Arckens L (2008) Direct profiling and identification of peptide expression differences in the pancreas of control and ob/ob mice by imaging mass spectrometry. Proteomics 8:3763–3774

    CAS  PubMed  Google Scholar 

  • Molloy MP, Brzezinski EE, Hang J, McDowell MT, VanBogelen RA (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3:1912–1919

    CAS  PubMed  Google Scholar 

  • Nicolls MR, D’Antonio JM, Hutton JC, Gill RG, Czwornog JL, Duncan MW (2003) Proteomics as a tool for discovery: proteins implicated in Alzheimer’s disease are highly expressed in normal pancreatic islets. J Proteome Res 2:199–205

    CAS  PubMed  Google Scholar 

  • Nyblom HK, Thorn K, Ahmed M, Bergsten P (2006) Mitochondrial protein patterns correlating with impaired insulin secretion from INS-1E cells exposed to elevated glucose concentrations. Proteomics 6:5193–5198

    CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed Central  PubMed  Google Scholar 

  • Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    CAS  PubMed  Google Scholar 

  • Olofsson CS, Collins S, Bengtsson M, Eliasson L, Salehi A, Shimomura K, Tarasov A, Holm C, Ashcroft F, Rorsman P (2007) Long-term exposure to glucose and lipids inhibits glucose-induced insulin secretion downstream of granule fusion with plasma membrane. Diabetes 56:1888–1897

    CAS  PubMed  Google Scholar 

  • Olsen JV, Andersen JR, Nielsen PA, Nielsen ML, Figeys D, Mann M, Wisniewski JR (2004) HysTag – a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol Cell Proteomics 3:82–92

    CAS  PubMed  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    CAS  PubMed  Google Scholar 

  • Ortsäter H, Sundsten T, Lin JM, Bergsten P (2007) Evaluation of the SELDI-TOF MS technique for protein profiling of pancreatic islets exposed to glucose and oleate. Proteomics 7:3105–3115

    PubMed  Google Scholar 

  • Paolisso G, Gambardella A, Amato L, Tortoriello R, D’Amore A, Varricchio M, D’Onofrio F (1995) Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 38:1295–1299

    CAS  PubMed  Google Scholar 

  • Park YJ, Ahn HJ, Chang HK, Kim JY, Huh KH, Kim MS, Kim YS (2009) The RhoGDI-α/JNK signaling pathway plays a significant role in mycophenolic acid-induced apoptosis in an insulin-secreting cell line. Cell Signal 21:356–364

    CAS  PubMed  Google Scholar 

  • Petricoin EF, Liotta LA (2004) SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol 15:24–30

    CAS  PubMed  Google Scholar 

  • Petyuk VA, Qian WJ, Hinault C, Gritsenko MA, Singhal M, Monroe ME, Camp DG 2nd, Kulkarni RN, Smith RD (2008) Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues. J Proteome Res 7:3114–3126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poitout V (2008) Glucolipotoxicity of the pancreatic β-cell: myth or reality. Biochem Soc Trans 36:901–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocrinol Rev 29:351–366

    CAS  Google Scholar 

  • Poland J, Sinha P, Siegert A, Schnolzer M, Korf U, Hauptmann S (2002) Comparison of protein expression profiles between monolayer and spheroid cell culture of HT-29 cells revealed fragmentation of CK18 in three-dimensional cell culture. Electrophoresis 23:1174–1184

    CAS  PubMed  Google Scholar 

  • Prentki M, Joly E, El-Assaad W, Roduit R (2002) Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in β-cell adaptation and failure in the etiology of diabetes. Diabetes 51(Suppl 3):S405–S413

    CAS  PubMed  Google Scholar 

  • Purrello F, Rabuazzo AM, Anello M, Patane G (1996) Effects of prolonged glucose stimulation on pancreatic beta cells: from increased sensitivity to desensitization. Acta Diabetol 33:253–256

    CAS  PubMed  Google Scholar 

  • Rabilloud T (2012) The whereabouts of 2D gels in quantitative proteomics. Methods Mol Biol 893:25–35

    CAS  PubMed  Google Scholar 

  • Ray S, Chandra H, Srivastava S (2010) Nanotechniques in proteomics: current status, promises and challenges. Biosens Bioelectron 25:2389–2401

    CAS  PubMed  Google Scholar 

  • Resing KA, Ahn NG (2005) Proteomics strategies for protein identification. FEBS Lett 579:885–889

    CAS  PubMed  Google Scholar 

  • Roche E, Buteau J, Aniento I, Reig JA, Soria B, Prentki M (1999) Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic β-cell line INS-1. Diabetes 48:2007–2014

    CAS  PubMed  Google Scholar 

  • Rogowska-Wrzesinska A, Le Bihan MC, Thaysen-Andersen M, Roepstorff P (2013) 2D gels still have a niche in proteomics. J Proteomics 88:4–13

    CAS  PubMed  Google Scholar 

  • Rorsman P (1997) The pancreatic beta-cell as a fuel sensor: an electrophysiologist’s viewpoint. Diabetologia 40:487–495

    CAS  PubMed  Google Scholar 

  • Roxas BA, Li Q (2008) Significance analysis of microarray for relative quantitation of LC/MS data in proteomics. BMC Bioinforma 9:187

    Google Scholar 

  • Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422:216–225

    CAS  PubMed  Google Scholar 

  • Sanchez JC, Chiappe D, Converset V, Hoogland C, Binz PA, Paesano S, Appel RD, Wang S, Sennitt M, Nolan A, Cawthorne MA, Hochstrasser DF (2001) The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics 1:136–163

    CAS  PubMed  Google Scholar 

  • Sanchez JC, Converset V, Nolan A, Schmid G, Wang S, Heller M, Sennitt MV, Hochstrasser DF, Cawthorne MA (2002) Effect of rosiglitazone on the differential expression of diabetes-associated proteins in pancreatic islets of C57Bl/6 lep/lep mice. Mol Cell Proteomics 1:509–516

    CAS  PubMed  Google Scholar 

  • Scheen AJ (2004) Pathophysiology of insulin secretion. Ann Endocrinol (Paris) 65:29–36

    CAS  Google Scholar 

  • Schrimpe-Rutledge AC, Fontes G, Gritsenko MA, Norbeck AD, Anderson DJ, Waters KM, Adkins JN, Smith RD, Poitout V, Metz TO (2012) Discovery of novel glucose-regulated proteins in isolated human pancreatic islets using LC-MS/MS-based proteomics. J Proteome Res 11:3520–3532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schubart UK (1982) Regulation of protein phosphorylation in hamster insulinoma cells. Identification of Ca2+-regulated cytoskeletal and cAMP-regulated cytosolic phosphoproteins by two-dimensional electrophoresis. J Biol Chem 257:12231–12238

    CAS  PubMed  Google Scholar 

  • Schubart UK, Fields KL (1984) Identification of a calcium-regulated insulinoma cell phosphoprotein as an islet cell keratin. J Cell Biol 98:1001–1009

    CAS  PubMed  Google Scholar 

  • Schuit F, Flamez D, De Vos A, Pipeleers D (2002) Glucose-regulated gene expression maintaining the glucose-responsive state of β-cells. Diabetes 51(Suppl 3):S326–S332

    CAS  PubMed  Google Scholar 

  • Schvartz D, Brunner Y, Coute Y, Foti M, Wollheim CB, Sanchez JC (2012) Improved characterization of the insulin secretory granule proteomes. J Proteomics 75:4620–4631

    CAS  PubMed  Google Scholar 

  • Schweitzer B, Predki P, Snyder M (2003) Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 3:2190–2199

    CAS  PubMed  Google Scholar 

  • Sol ER, Hovsepyan M, Bergsten P (2009) Proteins altered by elevated levels of palmitate or glucose implicated in impaired glucose-stimulated insulin secretion. Proteome Sci 7:24

    PubMed Central  PubMed  Google Scholar 

  • Sparre T, Reusens B, Cherif H, Larsen MR, Roepstorff P, Fey SJ, Mose Larsen P, Remacle C, Nerup J (2003) Intrauterine programming of fetal islet gene expression in rats – effects of maternal protein restriction during gestation revealed by proteome analysis. Diabetologia 46:1497–1511

    CAS  PubMed  Google Scholar 

  • Speer R, Wulfkuhle JD, Liotta LA, Petricoin EF 3rd (2005) Reverse-phase protein microarrays for tissue-based analysis. Curr Opin Mol Ther 7:240–245

    CAS  PubMed  Google Scholar 

  • Steil GM, Trivedi N, Jonas JC, Hasenkamp WM, Sharma A, Bonner-Weir S, Weir GC (2001) Adaptation of β-cell mass to substrate oversupply: enhanced function with normal gene expression. Am J Physiol Endocrinol Metab 280:E788–E796

    CAS  PubMed  Google Scholar 

  • Steinberg TH, Agnew BJ, Gee KR, Leung WY, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland RP, Patton WF (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3:1128–1144

    CAS  PubMed  Google Scholar 

  • Strohman R (1994) Epigenesis: the missing beat in biotechnology. Biotechnology (N Y) 12:156–164

    CAS  Google Scholar 

  • Sun X, Kelly RT, Tang K, Smith RD (2010) Ultrasensitive nanoelectrospray ionization-mass spectrometry using poly (dimethylsiloxane) microchips with monolithically integrated emitters. Analyst (Cambridge, U K) 135:2296–2302

    CAS  Google Scholar 

  • Sundsten T, Ortsater H (2008) Proteomics in diabetes research. Mol Cell Endocrinol 24:148

    CAS  Google Scholar 

  • Swanson SK, Washburn MP (2005) The continuing evolution of shotgun proteomics. Drug Discov Today 10:719–725

    CAS  PubMed  Google Scholar 

  • Swenne I, Andersson A (1984) Effect of genetic background on the capacity for islet cell replication in mice. Diabetologia 27:464–467

    CAS  PubMed  Google Scholar 

  • Thiede B, Hohenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR (2005) Peptide mass fingerprinting. Methods 35:237–247

    CAS  PubMed  Google Scholar 

  • Tochino Y (1987) The NOD mouse as a model of type I diabetes. Crit Rev Immunol 8:49–81

    CAS  PubMed  Google Scholar 

  • Trivedi M, Budihardjo I, Loureiro K, Reid TR, Ma JD (2008) Epothilones: a novel class of microtubule-stabilizing drugs for the treatment of cancer. Futur Oncol 4:483–500

    CAS  Google Scholar 

  • Unger RH, Grundy S (1985) Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes. Diabetologia 28:119–121

    CAS  PubMed  Google Scholar 

  • Uttamchandani M, Yao SQ (2008) Peptide microarrays: next generation biochips for detection, diagnostics and high-throughput screening. Curr Pharm Des 14:2428–2438

    CAS  PubMed  Google Scholar 

  • van Haeften TW (2002) Early disturbances in insulin secretion in the development of type 2 diabetes mellitus. Mol Cell Endocrinol 197:197–204

    PubMed  Google Scholar 

  • Vercauteren FG, Arckens L, Quirion R (2006) Applications and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis. Amino Acids 33:405

    PubMed  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094

    CAS  PubMed  Google Scholar 

  • Webb GC, Akbar MS, Zhao C, Steiner DF (2000) Expression profiling of pancreatic β cells: glucose regulation of secretory and metabolic pathway genes. Proc Natl Acad Sci U S A 97:5773–5778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 14:61–65

    CAS  Google Scholar 

  • Williams KL, Hochstrasser DF (1997) Introduction to the proteome. In: Wilkins MR, Williams KL, Appel RD, Hochstrasser DF (eds) Proteome research: new frontiers in functional genomics. Springer, New York, pp 1–12

    Google Scholar 

  • Wingren C, Borrebaeck CA (2006) Antibody microarrays: current status and key technological advances. Omics 10:411–427

    CAS  PubMed  Google Scholar 

  • Wolf G (2001) Insulin resistance associated with leptin deficiency in mice: a possible model for noninsulin-dependent diabetes mellitus. Nutr Rev 59:177–179

    CAS  PubMed  Google Scholar 

  • Yates JR III (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19

    CAS  PubMed  Google Scholar 

  • Yee A, Chang X, Pineda-Lucena A, Wu B, Semesi A, Le B, Ramelot T, Lee GM, Bhattacharyya S, Gutierrez P, Denisov A, Lee CH, Cort JR, Kozlov G, Liao J, Finak G, Chen L, Wishart D, Lee W, McIntosh LP, Gehring K, Kennedy MA, Edwards AM, Arrowsmith CH (2002) An NMR approach to structural proteomics. Proc Natl Acad Sci U S A 99:1825–1830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201

    CAS  PubMed  Google Scholar 

  • Zhou M, Veenstra T (2008) Mass spectrometry: m/z 1983–2008. Biotechniques 44:667–668, 670

    CAS  PubMed  Google Scholar 

  • Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7:55–63

    CAS  PubMed  Google Scholar 

  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meftun Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ahmed, M. (2013). Proteomics and Islet Research. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics