Skip to main content

Techno-economic Aspects and Circular Economy of Waste Biorefineries

  • Chapter
  • First Online:
Handbook of Waste Biorefinery

Abstract

Biorefineries mushroomed in the late twentieth century to generate biofuels in the pursuit of environment-friendly solutions to industrialization. Biomass from many crop species can be converted into biofuels using the advanced technologies in biorefinery. However, most species used as bioenergy sources are grown massively for food and feed. The food security goal may be compromised as a consequence of the food/feed and bioenergy competition. Technologies in utilizing wastes from processing food crops into sugar, oil, flour, and other food products into biofuel have proliferated in recent years. These technologies can provide solutions to the competing demands for food and biofuel. The integration of green chemistry into biorefineries, and the use of low environmental impact technologies by recycling food-processing wastes are keys to the efficient production of biofuels and high-value chemicals, which can encourage circular economy and sustainability. This chapter describes the technical and economic aspects of waste biorefineries, focusing on the integration of green chemistry and valorization of innovative products from the various forms of waste generated. Understanding the entire food production and waste generation chains and the technological aspects in valuing the wastes for economic goal would consequently develop a circular economy for biowaste refineries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja D, Tatsutani M (2009) Sustainable energy for developing countries. SAPIENS 2(1):1–16

    Google Scholar 

  • Ambaye TG, Vaccari M, Bonilla-Petriciolet A, Prasad S, van Hullebusch ED, Rtimi S (2021) Emerging technologies for biofuel production: a critical review on recent progress, challenges and perspectives. J Environ Manag 290:112627

    Article  Google Scholar 

  • Antar M, Lyu D, Nazari M, Shah A, Zhou X, Smith DL (2021) Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew Sust Energ Rev 139:110691

    Article  Google Scholar 

  • Arancon RAD, Ki Lin CS, Chan KM, Kwan TH, Luque R (2013) Advances on waste valorization: new horizons for a more sustainable society. Energy Sci Eng 1(2):53–71

    Article  Google Scholar 

  • Arora A, Banerjee J, Vijayaraghavan R, MacFarlane D, Patti AF (2018a) Process design and techno-economic analysis of an integrated mango processing waste biorefinery. Ind Crop Prod 116:24–34

    Article  Google Scholar 

  • Arora R, Sharma NK, Kumar S (2018b) Valorization of by-products following the biorefinery concept: commercial aspects of by-products of lignocellulosic biomass. In: Advances in sugarcane biorefinery. Elsevier, pp 163–178

    Chapter  Google Scholar 

  • Awasthi MK, Sarsaiya S, Patel A, Juneja A, Singh RP, Yan B, Awasthi SK, Jain A, Liu T, Duan Y, Pandey A, Zhang Z, Taherzadeh MJ (2020) Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renew Sust Energ Rev 127:109876

    Article  Google Scholar 

  • Bastidas-Oyanedel JR, Schmidt JE (2018) Increasing profits in food waste biorefinery—a techno-economic analysis. Energies 11(6):1551

    Article  Google Scholar 

  • Bbosa D, Mba-Wright M, Brown RC (2018) More than ethanol: a techno-economic analysis of a corn stover-ethanol biorefinery integrated with a hydrothermal liquefaction process to convert lignin into biochemicals. Biofuels Bioprod Biorefin 12(3):497–509

    Article  Google Scholar 

  • Benjamin MFD, Razon LF, Tan RR (2020) Risk and resilience analysis of integrated biorefineries using input-output modeling. In: Towards sustainable chemical processes. Elsevier, pp 99–114

    Chapter  Google Scholar 

  • Benjamin MFD, Ventura JR, Sangalang KPH, Adorna JA Jr, Belmonte BA, Andiappan V (2021) Optimal synthesis of Philippine agricultural residue-based integrated biorefinery via the P-graph method under supply and demand constraints. J Clean Prod 308:127348

    Article  Google Scholar 

  • Bhuyan N, Narzari R, Gogoi L, Bordoloi N, Hiloidhari M, Palsaniya DR, Deb U, Gogoi N, Kataki R (2020) Valorization of agricultural wastes for multidimensional use. In: Current developments in biotechnology and bioengineering. Elsevier, pp 41–78

    Chapter  Google Scholar 

  • Biofuels Roadmap 2017–2040. Department of Energy Philippines (doe.gov.ph)

    Google Scholar 

  • Borines MG, De Leon RL, McHenry MP (2011) Bioethanol production from farming non-food macroalgae in Pacific Island nations: chemical constituents, bioethanol yields, and prospective species in the Philippines. Renew Sust Energ Rev 15(9):4432–4435

    Article  Google Scholar 

  • Canabarro N, Soares JF, Anchieta CG, Kelling CS, Mazutti M (2013) Thermochemical processes for biofuels production from biomass. Sustain Chem Process 1:22

    Article  Google Scholar 

  • Cerda A, Artola A, Barrena R, Font X, Gea T, Sánchez A (2019) Innovative production of bioproducts from organic waste through solid-state fermentation. Front Sustain Food Syst 3:63

    Article  Google Scholar 

  • Clark JH (2007) Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass. J Chem Technol Biotechnol: Int Res Process Environ Clean Technol 82(7):603–609

    Article  Google Scholar 

  • Clark JH, Budarin V, Deswarte FE, Hardy JJ, Kerton FM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A, Samuel O (2006) Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chem 8(10):853–860

    Article  Google Scholar 

  • Clark JH, Luque R, Matharu AS (2012) Green chemistry, biofuels, and biorefinery. Ann Rev Chem Biomol Eng 3:183–207

    Article  Google Scholar 

  • Corpuz P (2017) Philippine biofuels situation and outlook. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_Manila_Philippines_8-16-2016.pdf

  • D’Angelo SC, Dall’Ara A, Mondelli C, Perez-Ramirez J, Papadokonstantakis S (2018) Techno-economic analysis of a glycerol biorefinery. ACS Sustain Chem Eng 6(12):16563–16572

    Article  Google Scholar 

  • Dalena F, Senatore A, Basile M, Marino D, Basile A (2019) From sugars to ethanol—from agricultural wastes to algal sources: an overview. Second Third Generation Feedstocks:3–34

    Google Scholar 

  • de Albuquerque TL, de Sousa Silva J, de Macedo AC, Gonçalves LRB, Rocha MVP (2019) Biotechnological strategies for the lignin-based biorefinery valorization

    Google Scholar 

  • Dias MO, Lima DR, Mariano AP (2018) Techno-economic analysis of cogeneration of heat and electricity and second-generation ethanol production from sugarcane. In: Advances in sugarcane biorefinery. Elsevier, pp 197–212

    Chapter  Google Scholar 

  • Diaz AB, Blandino A, Webb C, Caro I (2016) Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues. Appl Microbiol Biotechnol 100:9555–9566

    Article  Google Scholar 

  • DOE (2016) Philippine energy plan 2016–2030. https://www.doe.gov.ph/sites/default/files/pdf/pep/2016-2030_pep.pdf

  • DOE (2017a) Energy annual report 2017. https://www.doe.gov.ph/sites/default/files/pdf/transparency/annual_report_esar_2017.pdf

  • DOE (2017b) DOE sectoral plans and roadmaps (2017–2040). https://www.doe.gov.ph/sites/default/files/pdf/pep/pep-2018-2040_20210323.pdf

  • DOE (2020) Awarded biomass projects as of 31 March 2020. https://www.doe.gov.ph/sites/default/files/pdf/renewable_energy/awarded_biomass_2020-03-31.pdf

  • Galletti AMR, Antonetti C, De Luise V, Di Licursi D, Nasso NN (2012) Levulinic acid production from waste biomass. Bioresources 7(2):1824–1835

    Google Scholar 

  • Giri S, Nejadhashemi AP, Woznicki SA (2016) Regulators’ and stakeholders’ perspectives in a framework for bioenergy development. Land Use Policy 59:143–153

    Article  Google Scholar 

  • Goyal S (2020) Rationale for biomass supply chain. https://www.bioenergyconsult.com/biomass-supply-chain/

  • Guo M, van Dam KH, Touhami NO, Nguyen R, Delval F, Jamieson C, Shah N (2020) Multi-level system modelling of the resource-food-bioenergy nexus in the global south. Energy 197:117196

    Article  Google Scholar 

  • Hnain AK, Cockburn LM, Lefebvre DD (2011) Microbiological processes for waste conversion to bioenergy products: approaches and directions. Environ Rev 19(1):214–237

    Article  Google Scholar 

  • https://www.marketwatch.com/press-release/biorefinery-market-2021-key-players-industry-size-share-segmentation-comprehensive-analysis-and-forecast-by-2027-with-top-countries-data-2021-05-11

  • Katakojwala R, Kumar AN, Chakraborty D, Mohan SV (2019) Valorization of sugarcane waste: prospects of a biorefinery. In: Industrial and municipal sludge. Butterworth-Heinemann, pp 47–60

    Google Scholar 

  • Kumar B, Verma P (2020) Biomass-based biorefineries: an important architype towards a circular economy. Fuel 288:119622

    Article  Google Scholar 

  • Kurian JK, Nair GR, Hussain A, Raghavan GV (2013) Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew Sust Energ Rev 25:205–219

    Article  Google Scholar 

  • Liu Y, Lyu Y, Tian J, Zhao J, Ye N, Zhang Y, Chen L (2021) Review of waste biorefinery development towards a circular economy: from the perspective of a life cycle assessment. Renew Sust Energ Rev 139:110716

    Article  Google Scholar 

  • Lizardi-Jiménez MA, Hernández-Martínez R (2017) Solid-state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech 7:44

    Article  Google Scholar 

  • Marzo C, Díaz AB, Caro I, Blandino A (2018) Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation. Waste Manag Res:1–8

    Google Scholar 

  • Matsakas L, Gao Q, Janson S, Rova U, Christakopoulos C (2017) Green conversion of municipal solid wastes into fuels and chemicals. Electron J Biotechnol 26:69–83

    Article  Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  Google Scholar 

  • Morais AR, Bogel-Lukasik R (2013) Green chemistry and the biorefinery concept. Sustain Chem Process 1(1):1–3

    Article  Google Scholar 

  • Noh HM, Benito A, Alonso G (2016) Study of the current incentive rules and mechanisms to promote biofuel use in the EU and their possible application to the civil aviation sector. Transp Res Part D: Transp Environ 46:298–316

    Article  Google Scholar 

  • Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawaid M, Ibrahim FH (2017) Biomass and bioenergy: an overview of the development potential in Turkey and Malaysia. Renew Sust Energ Rev 79:1285–1302

    Article  Google Scholar 

  • Pattanaik L, Pattnaik F, Saxena DK, Naik SN (2019) Biofuels from agricultural wastes. In: Second and third generation of feedstocks. Elsevier, pp 103–142

    Chapter  Google Scholar 

  • Pierossi MA, Bertolani FC (2018) Sugarcane trash as feedstock for biorefineries: agricultural and logistics issues. In: Advances in sugarcane biorefinery. Elsevier, pp 17–39

    Chapter  Google Scholar 

  • Pradhan A, Mbohwa C (2014) Development of biofuels in South Africa: challenges and opportunities. Renew Sust Energ Rev 39:1089–1100

    Article  Google Scholar 

  • Pulighe G, Bonati G, Colangeli M, Morese MM, Traverso L, Lupia F, Khawaja C, Janssen R, Fava F (2019) Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions. Renew Sust Energ Rev 103:58–70

    Article  Google Scholar 

  • Raychaudhuri A, Ghosh SK (2016) Biomass supply chain in Asian and European countries. Procedia Environ Sci 35:914–924

    Article  Google Scholar 

  • Rosellon MAD (2017) The renewable energy policy debate in the Philippines (No. 2017-17). PIDS discussion paper series. https://www.econstor.eu/bitstream/10419/173594/1/pidsdps1717.pdf

  • Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40:5266–5281

    Article  Google Scholar 

  • Serrano-Ruiz JC, Luque R, Campelo JM, Romero AA (2012) Continuous-flow processes in heterogeneously catalyzed transformations of biomass derivatives into fuels and chemicals. Challenges 3:114–132

    Article  Google Scholar 

  • Shead B (2017) Biomass industry in the Philippines. https://www.aseanbriefing.com/news/biomass-industry-philippines/

  • Sy CL, Ubando AT, Aviso KB, Tan RR (2018) Multi-objective target oriented robust optimization for the design of an integrated biorefinery. J Clean Prod 170:496–509

    Article  Google Scholar 

  • Tapia JFD, Samsatli S, Doliente SS, Martinez-Hernandez E, Ab Karim WABW, Lim KL, Shafri HZM, Shaharum NSNB (2019) Design of biomass value chains that are synergistic with the food–energy–water nexus: strategies and opportunities. Food Bioprod Process 116:170–185

    Article  Google Scholar 

  • Tukacs JM, Holló AT, Rétfalvi N, Cséfalvay E, Dibó G, Havasi D, Mika LT (2017) Microwave-assisted valorization of biowastes to levulinic acid. ChemistrySelect 2:1375–1380

    Article  Google Scholar 

  • Ubando AT, Felix CB, Chen WH (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol 299:122585

    Article  Google Scholar 

  • Ullah K, Sharma VK, Dhingra S, Braccio G, Ahmad M, Sofia S (2015) Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew Sust Energ Rev 51:682–698

    Article  Google Scholar 

  • Usmani Z, Sharma M, Karpichev Y, Pandey A, Kuhad RC, Bhat R, Punia R, Aghbashlo M, Tabatabaei M, Gupta VK (2020) Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context. Renew Sust Energ Rev 131:109965

    Article  Google Scholar 

  • Verma DK, Mahanti NK, Thakur M, Chakraborty SK, Srivastv PP (2020) Microwave heating: alternative thermal process technology for food application. In: Emerging thermal and nonthermal technologies in food processing, 1st edn. Apple Academic

    Google Scholar 

  • Vian CE, Rodrigues L, da Silva HJ (2018) Evolution in public policies designed to develop the sugar–energy industry in Brazil. Adv Sugarcane Biorefin:279–306

    Google Scholar 

  • World Bank (n.d.) What a waste 2.0, a global snapshot of solid waste management to 2050. www.worldbank.org/en/news/infographic/2018/09/20/what-a-waste-20-a-global-snapshot-of-solid-waste-management-to-2050

  • Wulff N, Carrer H, Pascholati S (2006) Expression and purification of cellulase Xf818 from Xylella fastidiosa in Escherichia coli. Curr Microbiol 53:198–203

    Article  Google Scholar 

  • Xu CC, Liao B, Pang S, Nazari L, Mahmood N, Tushar MS, Dutta A, Ray MB (2018) Biomass energy. Cellulose 40:50

    Google Scholar 

  • Zafar S (2020) Bioenergy potential in Philippines. https://www.bioenergyconsult.com/biomass-philippines/

  • Zaman CZ, Pal K, Yehye WA, Sagadevan S, Shah ST, Adebisi GA, Marliana E, Rafique RF, Johan RB (2017) Pyrolysis: a sustainable way to generate energy from waste, pyrolysis, Mohamed Samer, IntechOpen. https://doi.org/10.5772/intechopen.69036

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balanay, R.M., Varela, R.P., Halog, A.B., Capangpangan, R.Y. (2022). Techno-economic Aspects and Circular Economy of Waste Biorefineries. In: Jacob-Lopes, E., Queiroz Zepka, L., Costa Deprá, M. (eds) Handbook of Waste Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-031-06562-0_39

Download citation

Publish with us

Policies and ethics