Skip to main content

Characteristics of Sleep in Critically Ill Patients: Part II: Circadian Rhythm Disruption

  • Chapter
  • First Online:
Sleep in Critical Illness

Abstract

Circadian rhythms are ubiquitous in organisms, tuning internal physiology to external conditions and allowing anticipation of environmental daily changes to confer advantage. To synchronize master and peripheral clocks with the environment, organisms entrain their rhythms to external cues. In intensive care units (ICUs), these external cues are mistimed or weak, leading to the desynchronization of patients’ circadian rhythms. This nontherapeutic environment may impair recovery from critical illness. The effects of critical illness itself on circadian rhythms are complex, and it is not known which “dysrhythm” are adaptive and which are harmful and thus represent targets for intervention. In this chapter, we review the basis of circadian rhythms, the circadian disrupters found in ICUs, and the changes in circadian rhythms in critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pittendrigh CS. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 1993;55:16–54.

    Article  CAS  PubMed  Google Scholar 

  2. Loudon AS. Circadian biology: a 2.5 billion year old clock. Curr Biol. 2012;22(14):R570–1.

    Article  CAS  PubMed  Google Scholar 

  3. O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, et al. Circadian rhythms persist without transcription in a eukaryote. Nature. 2011;469(7331):554–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ceriani MF, Hogenesch JB, Yanovsky M, Panda S, Straume M, Kay SA. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci. 2002;22(21):9305–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young MW. Circadian regulation of gene expression systems in the Drosophila head. Neuron. 2001;32(4):657–71.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79.

    Article  CAS  PubMed  Google Scholar 

  8. Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19(8):453–69.

    Article  CAS  PubMed  Google Scholar 

  9. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–63.

    Article  CAS  PubMed  Google Scholar 

  11. Nauta WJ. Hypothalamic regulation of sleep in rats; an experimental study. J Neurophysiol. 1946;9:285–316.

    Article  CAS  PubMed  Google Scholar 

  12. Franken P. A role for clock genes in sleep homeostasis. Curr Opin Neurobiol. 2013;23(5):864–72.

    Article  CAS  PubMed  Google Scholar 

  13. Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–8.

    Article  CAS  PubMed  Google Scholar 

  14. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284(5423):2177–81.

    Article  CAS  PubMed  Google Scholar 

  15. Ohta H, Yamazaki S, McMahon DG. Constant light desynchronizes mammalian clock neurons. Nat Neurosci. 2005;8(3):267–9.

    Article  CAS  PubMed  Google Scholar 

  16. Duffy JF, Czeisler CA. Effect of light on human circadian physiology. Sleep Med Clin. 2009;4(2):165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95(1):340–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenthal NE, Joseph-Vanderpool JR, Levendosky AA, Johnston SH, Allen R, Kelly KA, et al. Phase-shifting effects of bright morning light as treatment for delayed sleep phase syndrome. Sleep. 1990;13(4):354–61.

    CAS  PubMed  Google Scholar 

  19. Boivin DB, Duffy JF, Kronauer RE, Czeisler CA. Dose-response relationships for resetting of human circadian clock by light. Nature. 1996;379(6565):540–2.

    Article  CAS  PubMed  Google Scholar 

  20. Ceriani MF, Darlington TK, Staknis D, Mas P, Petti AA, Weitz CJ, et al. Light-dependent sequestration of timeless by cryptochrome. Science. 1999;285(5427):553–6.

    Article  CAS  PubMed  Google Scholar 

  21. Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535(Pt 1):261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Casiraghi L, Spiousas I, Dunster GP, McGlothlen K, Fernandez-Duque E, Valeggia C, et al. Moonstruck sleep: synchronization of human sleep with the moon cycle under field conditions. Sci Adv. 2021;7(5).

    Google Scholar 

  23. Sinturel F, Gos P, Petrenko V, Hagedorn C, Kreppel F, Storch KF, et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 2021;35(5–6):329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, et al. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci. 2020;51(1):109–38.

    Article  PubMed  Google Scholar 

  25. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell. 2015;161(1):84–92.

    Article  CAS  PubMed  Google Scholar 

  27. Patton DF, Mistlberger RE. Circadian adaptations to meal timing: neuroendocrine mechanisms. Front Neurosci. 2013;7:185.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yadlapalli S, Jiang C, Bahle A, Reddy P, Meyhofer E, Shafer OT. Circadian clock neurons constantly monitor environmental temperature to set sleep timing. Nature. 2018;555(7694):98–102.

    Article  CAS  PubMed  Google Scholar 

  29. Manella G, Aviram R, Bolshette N, Muvkadi S, Golik M, Smith DF, et al. Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. Proc Natl Acad Sci U S A. 2020;117(1):779–86.

    Article  CAS  PubMed  Google Scholar 

  30. Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle. J Biol Rhythm. 2015;30(2):84–94.

    Article  CAS  Google Scholar 

  31. Hower IM, Harper SA, Buford TW. Circadian rhythms, exercise, and cardiovascular health. J Circadian Rhythms. 2018;16:7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Evans JA, Davidson AJ. Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci. 2013;119:283–323.

    Article  PubMed  Google Scholar 

  33. Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016;354(6315):1004–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kecklund G, Axelsson J. Health consequences of shift work and insufficient sleep. BMJ. 2016;355:i5210.

    Article  PubMed  Google Scholar 

  35. Weingarten JA, Collop NA. Air travel: effects of sleep deprivation and jet lag. Chest. 2013;144(4):1394–401.

    Article  PubMed  Google Scholar 

  36. Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005;9(1):11–24.

    Article  PubMed  Google Scholar 

  37. Lewy AJ, Tetsuo M, Markey SP, Goodwin FK, Kopin IJ. Pinealectomy abolishes plasma melatonin in the rat. J Clin Endocrinol Metab. 1980;50(1):204–5.

    Article  CAS  PubMed  Google Scholar 

  38. Bojkowski CJ, Arendt J, Shih MC, Markey SP. Melatonin secretion in humans assessed by measuring its metabolite, 6-sulfatoxymelatonin. Clin Chem. 1987;33(8):1343–8.

    Article  CAS  PubMed  Google Scholar 

  39. Crawford JH, Yang S, Zhou M, Simms HH, Wang P. Down-regulation of hepatic CYP1A2 plays an important role in inflammatory responses in sepsis. Crit Care Med. 2004;32(2):502–8.

    Article  CAS  PubMed  Google Scholar 

  40. Verceles AC, Silhan L, Terrin M, Netzer G, Shanholtz C, Scharf SM. Circadian rhythm disruption in severe sepsis: the effect of ambient light on urinary 6-sulfatoxymelatonin secretion. Intensive Care Med. 2012;38(5):804–10.

    Article  CAS  PubMed  Google Scholar 

  41. Maas MB, Lizza BD, Abbott SM, Liotta EM, Gendy M, Eed J, et al. Factors disrupting melatonin secretion rhythms during critical illness. Crit Care Med. 2020;48(6):854–61.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mahlberg R, Tilmann A, Salewski L, Kunz D. Normative data on the daily profile of urinary 6-sulfatoxymelatonin in healthy subjects between the ages of 20 and 84. Psychoneuroendocrinology. 2006;31(5):634–41.

    Article  CAS  PubMed  Google Scholar 

  43. Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336(3):186–95.

    Article  CAS  PubMed  Google Scholar 

  44. Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ, et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci. 1999;11(5):1535–44.

    Article  CAS  PubMed  Google Scholar 

  45. Veldhuis JD, Iranmanesh A, Johnson ML, Lizarralde G. Amplitude, but not frequency, modulation of adrenocorticotropin secretory bursts gives rise to the nyctohemeral rhythm of the corticotropic axis in man. J Clin Endocrinol Metab. 1990;71(2):452–63.

    Article  CAS  PubMed  Google Scholar 

  46. Umeda T, Hiramatsu R, Iwaoka T, Shimada T, Miura F, Sato T. Use of saliva for monitoring unbound free cortisol levels in serum. Clin Chim Acta. 1981;110(2–3):245–53.

    CAS  PubMed  Google Scholar 

  47. Leproult R, Colecchia EF, L'Hermite-Baleriaux M, Van Cauter E. Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. J Clin Endocrinol Metab. 2001;86(1):151–7.

    CAS  PubMed  Google Scholar 

  48. Chapotot F, Buguet A, Gronfier C, Brandenberger G. Hypothalamo-pituitary-adrenal axis activity is related to the level of central arousal: effect of sleep deprivation on the association of high-frequency waking electroencephalogram with cortisol release. Neuroendocrinology. 2001;73(5):312–21.

    Article  CAS  PubMed  Google Scholar 

  49. Chapotot F, Gronfier C, Jouny C, Muzet A, Brandenberger G. Cortisol secretion is related to electroencephalographic alertness in human subjects during daytime wakefulness. J Clin Endocrinol Metab. 1998;83(12):4263–8.

    CAS  PubMed  Google Scholar 

  50. Morrison SF, Nakamura K. Central mechanisms for thermoregulation. Annu Rev Physiol. 2019;81:285–308.

    Article  CAS  PubMed  Google Scholar 

  51. Edwards B, Waterhouse J, Reilly T, Atkinson G. A comparison of the suitabilities of rectal, gut, and insulated axilla temperatures for measurement of the circadian rhythm of core temperature in field studies. Chronobiol Int. 2002;19(3):579–97.

    Article  CAS  PubMed  Google Scholar 

  52. Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010;330(6002):379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Doi M, Shimatani H, Atobe Y, Murai I, Hayashi H, Takahashi Y, et al. Non-coding cis-element of Period2 is essential for maintaining organismal circadian behaviour and body temperature rhythmicity. Nat Commun. 2019;10(1):2563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), Non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015: An American Academy of sleep medicine clinical practice guideline. J Clin Sleep Med. 2015;11(10):1199–236.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Delaney LJ, Litton E, Melehan KL, Huang HC, Lopez V, Van Haren F. The feasibility and reliability of actigraphy to monitor sleep in intensive care patients: an observational study. Crit Care. 2021;25(1):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frisk U, Olsson J, Nylen P, Hahn RG. Low melatonin excretion during mechanical ventilation in the intensive care unit. Clin Sci (Lond). 2004;107(1):47–53.

    Article  CAS  Google Scholar 

  57. Gehlbach BK, Chapotot F, Leproult R, Whitmore H, Poston J, Pohlman M, et al. Temporal disorganization of circadian rhythmicity and sleep-wake regulation in mechanically ventilated patients receiving continuous intravenous sedation. Sleep. 2012;35(8):1105–14.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gehlbach BK, Patel SB, Van Cauter E, Pohlman AS, Hall JB, Zabner J. The effects of timed light exposure in critically ill patients: a randomized controlled pilot clinical trial. Am J Respir Crit Care Med. 2018;198(2):275–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sertaridou EN, Chouvarda IG, Arvanitidis KI, Filidou EK, Kolios GC, Pnevmatikos IN, et al. Melatonin and cortisol exhibit different circadian rhythm profiles during septic shock depending on timing of onset: a prospective observational study. Ann Intensive Care. 2018;8(1):118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Shilo L, Dagan Y, Smorjik Y, Weinberg U, Dolev S, Komptel B, et al. Patients in the intensive care unit suffer from severe lack of sleep associated with loss of normal melatonin secretion pattern. Am J Med Sci. 1999;317(5):278–81.

    Article  CAS  PubMed  Google Scholar 

  61. Danielson SJ, Rappaport CA, Loher MK, Gehlbach BK. Looking for light in the din: an examination of the circadian-disrupting properties of a medical intensive care unit. Intensive Crit Care Nurs. 2018;46:57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cisse YM, Borniger JC, Lemanski E, Walker WH 2nd, Nelson RJ. Time-restricted feeding alters the innate immune response to bacterial endotoxin. J Immunol. 2018;200(2):681–7.

    Article  CAS  PubMed  Google Scholar 

  63. Yasumoto Y, Hashimoto C, Nakao R, Yamazaki H, Hiroyama H, Nemoto T, et al. Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. Metabolism. 2016;65(5):714–27.

    Article  CAS  PubMed  Google Scholar 

  64. Honarmand K, Rafay H, Le J, Mohan S, Rochwerg B, Devlin JW, et al. A systematic review of risk factors for sleep disruption in critically ill adults. Crit Care Med. 2020;48(7):1066–74.

    PubMed  Google Scholar 

  65. Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev. 2018;3:CD010754.

    Google Scholar 

  66. Maas MB, Lizza BD, Kim M, Abbott SM, Gendy M, Reid KJ, et al. Stress-induced behavioral quiescence and abnormal rest-activity rhythms during critical illness. Crit Care Med. 2020;48(6):862–71.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, et al. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A. 2009;106(50):21407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS, et al. Core circadian protein CLOCK is a positive regulator of NF-kappaB-mediated transcription. Proc Natl Acad Sci U S A. 2012;109(37):E2457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Narasimamurthy R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci U S A. 2012;109(31):12662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haimovich B, Calvano J, Haimovich AD, Calvano SE, Coyle SM, Lowry SF. In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit Care Med. 2010;38(3):751–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coiffard B, Diallo AB, Mezouar S, Leone M, Mege JL. A tangled threesome: circadian rhythm, body temperature variations, and the immune system. Biol-Basel. 2021;10(1).

    Google Scholar 

  72. Paul T, Lemmer B. Disturbance of circadian rhythms in analgosedated intensive care unit patients with and without craniocerebral injury. Chronobiol Int. 2007;24(1):45–61.

    Article  CAS  PubMed  Google Scholar 

  73. Kirkness CJ, Burr RL, Thompson HJ, Mitchell PH. Temperature rhythm in aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2008;8(3):380–90.

    Article  PubMed  Google Scholar 

  74. Gazendam JAC, Van Dongen HPA, Grant DA, Freedman NS, Zwaveling JH, Schwab RJ. Altered circadian rhythmicity in patients in the ICU. Chest. 2013;144(2):483–9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Papaioannou VE, Sertaridou EN, Chouvarda IG, Kolios GC, Pneumatikos IN. Determining rhythmicity and determinism of temperature curves in septic and non-septic critically ill patients through chronobiological and recurrence quantification analysis: a pilot study. Intensive Care Med Exp. 2019;7(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Varela M, Churruca J, Gonzalez A, Martin A, Ode J, Galdos P. Temperature curve complexity predicts survival in critically ill patients. Am J Respir Crit Care Med. 2006;174(3):290–8.

    Article  PubMed  Google Scholar 

  77. Pina G, Brun J, Tissot S, Claustrat B. Long-term alteration of daily melatonin, 6-sulfatoxymelatonin, cortisol, and temperature profiles in burn patients: a preliminary report. Chronobiol Int. 2010;27(2):378–92.

    Article  CAS  PubMed  Google Scholar 

  78. Bartanusz V, Corneille MG, Sordo S, Gildea M, Michalek JE, Nair PV, et al. Diurnal salivary cortisol measurement in the neurosurgical-surgical intensive care unit in critically ill acute trauma patients. J Clin Neurosci. 2014;21(12):2150–4.

    Article  CAS  PubMed  Google Scholar 

  79. Savaridas T, Andrews PJ, Harris B. Cortisol dynamics following acute severe brain injury. Intensive Care Med. 2004;30(7):1479–83.

    Article  PubMed  Google Scholar 

  80. Boonen E, Meersseman P, Vervenne H, Meyfroidt G, Guiza F, Wouters PJ, et al. Reduced nocturnal ACTH-driven cortisol secretion during critical illness. Am J Physiol Endocrinol Metab. 2014;306(8):E883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Coiffard B, Diallo AB, Culver A, Mezouar S, Hammad E, Vigne C, et al. Circadian rhythm disruption and sepsis in severe trauma patients. Shock. 2019;52(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  82. Maas MB, Iwanaszko M, Lizza BD, Reid KJ, Braun RI, Zee PC. Circadian gene expression rhythms during critical illness. Crit Care Med. 2020;48(12):e1294–e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Acuna-Fernandez C, Marin JS, Diaz-Casado ME, Rusanova I, Darias-Delbey B, Perez-Guillama L, et al. Daily changes in the expression of clock genes in sepsis and their relation with sepsis outcome and urinary excretion of 6-sulfatoximelatonin. Shock. 2020;53(5):550–9.

    Article  CAS  PubMed  Google Scholar 

  84. Diaz E, Diaz I, Del Busto C, Escudero D, Perez S. Clock genes disruption in the intensive care unit. J Intensive Care Med. 2020;35(12):1497–504.

    Article  PubMed  Google Scholar 

  85. Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, et al. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythm. 2014;29(4):257–76.

    Article  CAS  Google Scholar 

  86. Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S, O'Neill JS, et al. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci U S A. 2016;113(36):10085–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Halberg F, Johnson EA, Brown BW, Bittner JJ. Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med. 1960;103:142–4.

    Article  CAS  PubMed  Google Scholar 

  88. Dessap AM, Roche-Campo F, Launay JM, Charles-Nelson A, Katsahian S, Brun-Buisson C, et al. Delirium and circadian rhythm of melatonin during weaning from mechanical ventilation: an ancillary study of a weaning trial. Chest. 2015;148(5):1231–41.

    Article  PubMed  Google Scholar 

  89. Meyer TJ, Eveloff SE, Bauer MS, Schwartz WA, Hill NS, Millman RP. Adverse environmental conditions in the respiratory and medical ICU settings. Chest. 1994;105(4):1211–6.

    Article  CAS  PubMed  Google Scholar 

  90. Verceles AC, Liu X, Terrin ML, Scharf SM, Shanholtz C, Harris A, et al. Ambient light levels and critical care outcomes. J Crit Care. 2013;28(1):110 e1–8.

    Google Scholar 

  91. Dunn H, Anderson MA, Hill PD. Nighttime lighting in intensive care units. Crit Care Nurse. 2010;30(3):31–7.

    Article  PubMed  Google Scholar 

  92. Palazidou E, Franey C, Arendt J, Stahl S, Checkley S. Evidence for a functional role of alpha-1 adrenoceptors in the regulation of melatonin secretion in man. Psychoneuroendocrinology. 1989;14(1–2):131–5.

    Article  CAS  PubMed  Google Scholar 

  93. Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34(3):283–91A.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ben-Hamouda N, Poirel VJ, Dispersyn G, Pevet P, Challet E, Pain L. Short-term propofol anaesthesia down-regulates clock genes expression in the master clock. Chronobiol Int. 2018;35(12):1735–41.

    Article  CAS  PubMed  Google Scholar 

  95. Alexopoulou C, Kondili E, Diamantaki E, Psarologakis C, Kokkini S, Bolaki M, et al. Effects of dexmedetomidine on sleep quality in critically ill patients a pilot study. Anesthesiology. 2014;121(4):801–7.

    Article  CAS  PubMed  Google Scholar 

  96. Munoz-Hoyos A, Fernandez-Garcia JM, Molina-Carballo A, Macias M, Escames G, Ruiz-Cosano C, et al. Effect of clonidine on plasma ACTH, cortisol and melatonin in children. J Pineal Res. 2000;29(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  97. Golombek DA, Martini M, Cardinali DP. Melatonin as an anxiolytic in rats: time dependence and interaction with the central GABAergic system. Eur J Pharmacol. 1993;237(2–3):231–6.

    Article  CAS  PubMed  Google Scholar 

  98. McIntyre IM, Norman TR, Burrows GD, Armstrong SM. Alterations to plasma melatonin and cortisol after evening alprazolam administration in humans. Chronobiol Int. 1993;10(3):205–13.

    Article  CAS  PubMed  Google Scholar 

  99. Dimsdale JE, Norman D, DeJardin D, Wallace MS. The effect of opioids on sleep architecture. J Clin Sleep Med. 2007;3(1):33–6.

    PubMed  Google Scholar 

  100. Oxlund J, Knudsen T, Strom T, Lauridsen JT, Jennum PJ, Toft P. Serum melatonin concentration in critically ill patients randomized to sedation or non-sedation. Ann Intensive Care. 2021;11(1):40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Freedman NS, Gazendam J, Levan L, Pack AI, Schwab RJ. Abnormal sleep/wake cycles and the effect of environmental noise on sleep disruption in the intensive care unit. Am J Respir Crit Care Med. 2001;163(2):451–7.

    Article  CAS  PubMed  Google Scholar 

  102. Munro CL, Liang Z, Elias MN, Ji M, Chen X, Calero K. Sleep and activity patterns are altered during early critical illness in mechanically ventilated adults. Dimens Crit Care Nurs. 2021;40(1):29–35.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hodge BA, Wen Y, Riley LA, Zhang X, England JH, Harfmann BD, et al. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet Muscle. 2015;5:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Mundigler G, Delle-Karth G, Koreny M, Zehetgruber M, Steindl-Munda P, Marktl W, et al. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med. 2002;30(3):536–40.

    Article  CAS  PubMed  Google Scholar 

  105. Li CX, Liang DD, Xie GH, Cheng BL, Chen QX, Wu SJ, et al. Altered melatonin secretion and circadian gene expression with increased proinflammatory cytokine expression in early-stage sepsis patients. Mol Med Rep. 2013;7(4):1117–22.

    Article  CAS  PubMed  Google Scholar 

  106. Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21(2):67–84.

    Article  CAS  PubMed  Google Scholar 

  107. Hofstra WA, de Weerd AW. How to assess circadian rhythm in humans: a review of literature. Epilepsy Behav. 2008;13(3):438–44.

    Article  PubMed  Google Scholar 

  108. Telias I, Wilcox ME. Sleep and circadian rhythm in critical illness. Crit Care. 2019;23(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian K. Gehlbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melone, MA., Gehlbach, B.K. (2022). Characteristics of Sleep in Critically Ill Patients: Part II: Circadian Rhythm Disruption. In: Weinhouse, G.L., Devlin, J.W. (eds) Sleep in Critical Illness. Springer, Cham. https://doi.org/10.1007/978-3-031-06447-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06447-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06446-3

  • Online ISBN: 978-3-031-06447-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics