Skip to main content

Bioremediation: Microbial and Plant Assisted Remediation of Contaminated Environments

  • Chapter
  • First Online:
Towards Sustainable Natural Resources

Abstract

In the previous decades, the pollution of the environment has increased due to rapid growth in human population, urbanization, and industrialization. The indiscriminate use of the resources by the ever-increasing human population has increased the pollution of environmental sites mainly by industrial effluents, sewage, surface runoff from agricultural fields, fertilizers, and pesticides. The widespread degradation of natural ecosystems by pollutants cause serious threats as they get into various environments (air, soil, and water) and accumulate in food chains. Conventional methods used in the remediation/treatment processes of contaminated environments are expensive, inefficient, leave toxic residues in the environment, and are not reliable. Therefore, bioremediation is viewed as an evolving and promising technique in the treatment of various types of contaminants. Bioremediation of polluted environments has proven successful, efficient, and reliable because of its environment-friendly features. The basic principle of bioremediation is natural attenuation also known as intrinsic bioremediation, which involves the remediation of polluted sites naturally in the environments without any anthropogenic interference to reduce the toxicity, mass, and concentration of pollutants in those media. Bioremediation may involve the use of plants, fungi, bacteria, and other algae for remediation but the process mainly focuses on the use of microorganisms. This chapter, therefore, tries to provide a comprehensive knowledge of the potential role of bioremediation technologies and processes for the potential remediation of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As (III) contaminated soil by Sporosarcinaginsengisoli. J Hazard Mater 201:178–184

    Article  CAS  Google Scholar 

  • Adriaensen K, Vrålstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71(11):7279–7284

    Article  CAS  Google Scholar 

  • Appelhof M, Olszewski J (2017) Worms eat my garbage: how to set up and maintain a worm composting system: compost food waste, produce fertilizer for houseplants and garden, and educate your kids and family. Storey Publishing

    Google Scholar 

  • Aust SD, Swaner PR, Stahl JD (2004) Detoxification and metabolism of chemicals by white-rot fungi. In: Zhu JJPC, Aust SD, Lemley Gan AT (eds) Pesticide decontamination and detoxification. Oxford University Press, Washington, DC, pp 3–14

    Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):1–18

    Article  CAS  Google Scholar 

  • Baarschers WH, Heitland HS (1986) Biodegradation of fenitrothion and fenitrooxon by the fungus Trichoderma viride. J Agric Food Chem 34(4):707–709

    Article  CAS  Google Scholar 

  • Balamurugan D, Udayasooriyan C, Kamaladevi B (2014) Chromium (VI) reduction by Pseudomonas putida and Bacillus subtilis isolated from contaminated soils. Int J Environ Sci 5(3):522

    CAS  Google Scholar 

  • Barman SR, Banerjee P, Mukhopadhayay A, Das P (2017) Biodegradation of acenapthene and naphthalene by Pseudomonas mendocina: Process optimization, and toxicity evaluation. J Environ Chem Eng 5(5):4803–4812

    Article  CAS  Google Scholar 

  • Barr D, Finnamore JR, Bardos RP, Weeks JM, Nathanail CP (2002) Biological methods for assessment and remediation of contaminated land: case studies. CIRIA

    Google Scholar 

  • Carboneras B, Villaseñor J, Fernandez-Morales FJ (2017) Modelling aerobic biodegradation of atrazine and 2, 4-dichlorophenoxy acetic acid by mixed-cultures. Biores Technol 243:1044–1050

    Article  CAS  Google Scholar 

  • Chaineau CH, Rougeux G, Yepremian C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37(8):1490–1497

    Article  CAS  Google Scholar 

  • Choudhary DK, Varma A, Tuteja N (eds) (2016) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM, de Sousa PA, Melo DF, Coelho NM (2015) Bioremediation of polluted waters using microorganisms. In: Advances in bioremediation of wastewater and polluted soil; Shiomi, N., Ed.; InTech: Shanghai, China

    Google Scholar 

  • Corey C, Stewart K (2004) Petroleum hydrocarbon remediation using air injection/vapor extraction, USMC Mountain Warfare Training Center. In In situ and on-site bioremediation-2003. In: Proceedings of the seventh international in situ and on-site bioremediation symposium, Orlando, Florida, USA, 2–5 June, 2003. Battelle Press

    Google Scholar 

  • Coulon F, Al Awadi M, Cowie W, Mardlin D, Pollard S, Cunningham C, …, Paton GI (2010) When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollut 158(10):3032–3040

    Google Scholar 

  • Dar SA, Lone FA, Dar SA, Bhat RA, Bashir I, Mir SA, Dar ZA (2020) Biofilm: an innovative modern technology for aquatic pollution remediation. In: Bioremediation and biotechnology, Vol 2. Springer, Cham, pp 207–219

    Google Scholar 

  • Das S, Jean JS, Kar S, Chou ML, Chen CY (2014) Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J Hazard Mater 272:112–120

    Article  CAS  Google Scholar 

  • Daverey A, Pakshirajan K (2009) Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int 42(4):499–504

    Article  CAS  Google Scholar 

  • Dong G, Wang Y, Gong L, Wang M, Wang H, He N, …, Li Q (2013) Formation of soluble Cr (III) end-products and nanoparticles during Cr (VI) reduction by Bacillus cereus strain XMCr-6. Biochem Eng J 70:166–172

    Google Scholar 

  • Dzairi FZ, Zeroual Y, Moutaouakkil A, Taoufik J, Talbi M, Loutfi M, Lee K, Blaghen M (2004) Bacterial volatilization of mercury by immobilized bacteria in fixed and fluidized bed bioreactors. Ann Microbiol 54(4):353–364

    Google Scholar 

  • Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Biores Technol 99(13):5296–5308

    Article  CAS  Google Scholar 

  • Fingerman M, Nagabhushanam R (2005) Bioremediation of aquatic and terrestrial ecosystem. Science Publishers Inc.

    Google Scholar 

  • Frutos FJG, Escolano O, García S, Babín M, Fernández MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183(1–3):806–813

    Article  CAS  Google Scholar 

  • Fuentes MS, Raimondo EE, Amoroso MJ, Benimeli CS (2017) Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Chemosphere 173:359–367

    Article  CAS  Google Scholar 

  • Gadd GM, Gadd GM (eds) (2001) Fungi in bioremediation (No. 23). Cambridge University Press

    Google Scholar 

  • Gidarakos E, Aivalioti M (2007) Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site. J Hazard Mater 149:574–581

    Article  CAS  Google Scholar 

  • Haught RC, Neogy R, Vonderhaar SS, Krishnan ER, Safferman SI, Ryan J (1995) Land treatment alternatives for bioremediating wood preserving wastes. Hazard Waste Hazard Mater 12(4):329–344

    Article  CAS  Google Scholar 

  • Höhener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7

    Article  CAS  Google Scholar 

  • Iida T, Sumita T, Ohta A, Takagi M (2000) The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowialipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16(12):1077–1087

    Article  CAS  Google Scholar 

  • Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61(7):985–992

    Google Scholar 

  • Jan B, Beilen V, Neuenschwunder M, Suits THM, Roth C, Balada SB, Witholt B (2003) Rubredoxins involved in alkane degradation. J Bacteriol 184(6):1722–1732

    Google Scholar 

  • Jørgensen KS, Puustinen J, Suortti AM (2000) Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environ Pollut 107(2):245–254

    Article  Google Scholar 

  • Kanmani P, Aravind J, Preston D (2012) Remediation of chromium contaminants using bacteria. Int J Environ Sci Technol 9(1):183–193

    Article  CAS  Google Scholar 

  • Kim S, Krajmalnik-Brown R, Kim JO, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci Total Environ 497:250–259

    Article  CAS  Google Scholar 

  • Kirk TK, Lamar RT, Glaser JA (1992) The potential of white-rot fungi in bioremediation. In: Biotechnology and environmental science. Springer, Boston, MA, pp 131–138

    Google Scholar 

  • Kumar M, León V, Materano ADS, Ilzins OA, Luis L (2008) Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol 24(7):1047–1057

    Article  CAS  Google Scholar 

  • Kümmerer K, Dionysiou DD, Olsson O, Fatta-Kassinos D (2019) Reducing aquatic micropollutants–Increasing the focus on input prevention and integrated emission management. Sci Total Environ 652:836–850

    Article  CAS  Google Scholar 

  • Kuppusamy S, Maddela NR, Megharaj M, Venkateswarlu K (2020) Ecological impacts of total petroleum hydrocarbons. In: Total petroleum hydrocarbons. Springer, Cham, pp 95–138

    Google Scholar 

  • Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M (2014) Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci 26(6):1223–1231

    Article  CAS  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18(3):431–439

    Article  CAS  Google Scholar 

  • Levin L, Viale A, Forchiassin A (2003) Degradation of organic pollutants by the white rot basidiomycete Trametestrogii. Int Biodeterior Biodegradation 52(1):1–5

    Article  CAS  Google Scholar 

  • Lim MS, Yeo IW, Clement TP, Roh Y, Lee KK (2007) Mathematical model for predicting microbial reduction and transport of arsenic in groundwater systems. Water Res 41(10):2079–2088

    Article  CAS  Google Scholar 

  • Maeng JH, Sakai Y, Tani Y, Kato N (1996) Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J Bacteriol 178(13):3695–3700

    Google Scholar 

  • Mahmound A, Aziza Y, Abdeltif A, Rachida M (2008) Biosurfactant production by Bacillus strain injected in the petroleum reservoirs. J Ind Microbiol Biotechnol 35(2):1303–1306

    Google Scholar 

  • Mansur M, Arias ME, Copa-Patiño JL, Flärdh M, González AE (2003) The white-rot fungus Pleurotusostreatus secretes laccase isozymes with different substrate specificities. Mycologia 95(6):1013–1020

    Article  CAS  Google Scholar 

  • McDonald IR, Miguez CB, Rogge G, Bourque D, Wendlandt KD, Groleau D, Murrell JC (2006) Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol Lett 255(2):225–232

    Article  CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci, 736–747

    Google Scholar 

  • Mwandira W, Nakashima K, Kawasaki S (2017) Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol Eng 109:57–64

    Article  Google Scholar 

  • Nabi M (2020) Macrophytes a viable option for the uptake of Heavy metals from aquatic ecosystems—a review. Int J Res & Dev Technol 4(2):229–232

    Google Scholar 

  • Nabi M (2021) Heavy metal accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environ Nanotechnol Monit Manage 16:100509

    Google Scholar 

  • Nabi M, Tabbassum N (2022) Role of environmental toxicants on neurodegenerative disorders. Front Toxicol 4:1–20

    Google Scholar 

  • Obire O (2001) Studies on the biodegradation potentials of some microorganisms isolated from water systems of two petroleum producing areas in Nigeria. Niger J Bot 1:81–90

    Google Scholar 

  • Pan X, Wang S, Shi N, Fang H, Yu Y (2018) Biodegradation and detoxification of chlorimuron-ethyl by Enterobacter ludwigii sp. CE-1. Ecotoxicol Environ Saf 150:34–39

    Article  CAS  Google Scholar 

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2006) Molecular biology of metal homeostasis and detoxification: from microbes to man, Tamas, M.J., and Martinoia, E. (Eds.), Springer.

    Google Scholar 

  • Philippoussis A, Diamantopoulou P, Euthimiadou H, Zervakis GI (2001) The composition and porosity of lignocellulosic substrates influence mycelium growth and respiration rates of lentinus edodes (Berk.) Sing. Int J Med Mushrooms 3(2–3)

    Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. Bioremediation: Appl Microb Solut R‐World Environ Cleanup, 139–236

    Google Scholar 

  • Pletsch M, de Araujo BS, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17(8):679–687

    Article  CAS  Google Scholar 

  • Quintella CM, Mata AM, Lima LC (2019) Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. J Environ Manage 241:156–166

    Article  CAS  Google Scholar 

  • Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, …, Mandal A (2015) Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. J Environ Sci Health, Part A 50(11):1136–1147

    Google Scholar 

  • Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Biores Technol 85(3):257–261

    Article  CAS  Google Scholar 

  • Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    Article  CAS  Google Scholar 

  • Sardrood BP, Goltapeh EM, Varma A (2013) An introduction to bioremediation. In: Fungi as bioremediators. Springer, Berlin, Heidelberg, pp 3–27

    Google Scholar 

  • Sasikumar CS, Papinazath T (2003, December) Environmental management: bioremediation of polluted environment. In: Proceedings of the third international conference on environment and health. Department of Geography, University of Madras, Chennai and Faculty of Environmental Studies, York University, New York, pp 465–469

    Google Scholar 

  • Singh B, Bhattacharya A, Channashettar VA, Jeyaseelan CP, Gupta S, Sarma PM, Mandal AK, Lal B (2012) Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains. Bull Environ Contam Toxicol 89(2):257–262

    Article  CAS  Google Scholar 

  • Singh P, Singh VK, Singh R, Borthakur A, Madhav S, Ahamad A, Kumar A, Pal DB, Tiwary D, Mishra PK (2020) Bioremediation: a sustainable approach for management of environmental contaminants. In: Abatement of environmental pollutants. Elsevier, pp 1–23

    Google Scholar 

  • Sinha A, Pant KK, Khare SK (2012) Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int Biodeterior Biodegradation 71:1–8

    Article  CAS  Google Scholar 

  • Sondhia S, Rajput S, Varma RK, Kumar A (2016) Biodegradation of the herbicide penoxsulam (triazolopyrimidinesulphonamide) by fungal strains of Aspergillus in soil. Appl Soil Ecol 105:196–206

    Article  Google Scholar 

  • Tabatabaee A, Assadi MM, Noohi AA, Sajadian VA (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. J Environ Health Sci Eng 2(1):6–12

    Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223:33–52

    CAS  Google Scholar 

  • van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases.Appl Environ Microbiol 721):59–65

    Google Scholar 

  • Venkata Mohan S, Sirisha K, Chandrasekhara Rao N, Sarma PN, Jayarama Reddy S (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116(1–2):39–48

    Article  CAS  Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramírez SA, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Biores Technol 99(13):5574–5581

    Article  CAS  Google Scholar 

  • Wang X, Hou X, Liang S, Lu Z, Hou Z, Zhao X, …, Zhang H (2018) Biodegradation of fungicide Tebuconazole by Serratia marcescens strain B1 and its application in bioremediation of contaminated soil. Int Biodeterior & Biodegrad 127:185–191

    Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  Google Scholar 

  • Yang X, Wei H, Zhu C, Geng B (2018) Biodegradation of atrazine by the novel Citricoccus sp. strain TT3. Ecotoxicol Environ Saf 147:144–150

    Article  CAS  Google Scholar 

  • Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73(4):1239–1247

    Article  CAS  Google Scholar 

  • Zhao R, Wang B, Cai QT, Li XX, Liu M, Hu D, Guo DB, Wang J, Fan C (2016) Bioremediation of hexavalent chromium pollution by Sporosarcinasaromensis M52 isolated from offshore sediments in Xiamen China. Biomed Environ Sci 29(2):127–136

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Ahmad Dar .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest:

None

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nabi, M., Dar, S.A. (2022). Bioremediation: Microbial and Plant Assisted Remediation of Contaminated Environments. In: Rani, M., Chaudhary, B.S., Jamal, S., Kumar, P. (eds) Towards Sustainable Natural Resources. Springer, Cham. https://doi.org/10.1007/978-3-031-06443-2_10

Download citation

Publish with us

Policies and ethics