Skip to main content

Sequelae of Hypertension in Children and Adolescents

  • Reference work entry
  • First Online:
Pediatric Hypertension

Abstract

Data obtained from autopsy studies as well as noninvasive imaging techniques have demonstrated that target organ changes occur in children and adolescents with mild to moderate elevations in blood pressure. These chronic elevations in blood pressure in pediatric patients induce changes in cardiac structure and function. The cardiac changes occur in parallel with alterations in the vascular system and subsequent development of atherosclerosis. Subclinical changes in renal function and microalbumin excretion are also noted in these patients. Mild to moderate elevations in blood pressure also impact cognitive functioning in children. The adverse effects of severe hypertension in children and adolescence on these organ systems are also well-known. Since the publication of the last edition of this chapter, several longitudinal cohort studies have been initiated to elucidate the significance of these alterations to better define appropriate blood pressure targets and treatment guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams HR, Szilagyi PG, Gebhardt L et al (2010) Learning and attention problems among children with pediatric primary hypertension. Pediatrics 126:e1425–e1429

    Article  Google Scholar 

  • Agu NC, McNiece Redwine K et al (2014) Detection of early diastolic alterations by tissue Doppler imaging in untreated childhood-onset essential hypertension. J Am Soc Hypertens 8:303–311

    Article  Google Scholar 

  • Assadi F (2008) Relation of left ventricular hypertrophy to microalbuminuria and c-reactive protein in children and adolescents with essential hypertension. Pediatr Cardiol 4:580–584

    Article  Google Scholar 

  • Benjamin EJ, D’Agostino RB, Belanger AJ et al (1995) Left atrial size and the risk of stroke and death: the Framingham heart study. Circulation 92:835–841

    Article  CAS  Google Scholar 

  • Berenson GS, Srinivasan SR, Bao W et al (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 335:1650–1656

    Google Scholar 

  • Bjelakovic B, Lukic S, Vukomanovic V et al (2013) Blood pressure variability and left ventricular mass index in children. J Clin Hypertens 15:905–909

    Article  Google Scholar 

  • Border WL, Kimball TR, Witt SA et al (2007) Diastolic filling abnormalities in children with essential hypertension. J Pediatr 150:503–509

    Article  Google Scholar 

  • Brady TM, Fivush B, Flynn JT et al (2008) Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension. J Pediatr 152:73–78

    Article  Google Scholar 

  • Brady TM, Fivush B, Pareck RS et al (2010) Racial difference among children with primary hypertension. Pediatrics 126:931–937

    Article  Google Scholar 

  • Brady TM, Appel LJ, Holmes KW et al (2016) Association between adiposity and left ventricular mass in children with hypertension. J Clin Hypertens 18:625–633

    Article  Google Scholar 

  • Brown IAM, Diederich L, Good ME et al (2018) Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension: VSMC in hypertension. Arterioscler Thromb Vasc Biol 38:1969–1985

    Article  CAS  Google Scholar 

  • Browning AC, Mengher LS, Gregson RM et al (2001) Visual outcome of malignant hypertension in young people. Arch Dis Child 85:401–403

    Article  CAS  Google Scholar 

  • Chinali M, Emma F, Esposito C et al (2016) Left ventricular mass indexing in infants, children, and adolescents: a simplified approach for the identification of left ventricular hypertrophy in clinical practice. J Pediatr 170:193–198

    Article  Google Scholar 

  • Cirillo M, Stellato D, Laurenzi M et al (2000) Pulse pressure and isolated systolic hypertension: association with microalbuminuria. The GUBBIO Study Collaborative Research Group. Kidney Int 58:1211–1218

    Google Scholar 

  • Civilibal M, Duru NS, Elevli M (2014) Subclinical atherosclerosis and ambulatory blood pressure in children with metabolic syndrome. Pediatr Nephrol 29:2197–2204

    Article  Google Scholar 

  • Conkar S, Yilmaz E, Hacikara S et al (2015) Is daytime systolic load an important risk factor for target organ damage in pediatric hypertension? J Clin Hypertens 17:767–769

    Article  Google Scholar 

  • Croix B, Feig DI (2006) Childhood hypertension is not a silent disease. Pediatr Nephrol 21:527–532

    Article  Google Scholar 

  • Cuspidi C, Salerno M, Salerno DE et al (2004) High prevalence of retinal vascular changes in never-treated essential hypertensives: an inter- and intra-observer reproducibility study with non-mydriatic retinography. Blood Press 13:25–30

    Article  Google Scholar 

  • Daniels SR, Lipman MJ, Burke MJ et al (1991) The prevalence of retinal vascular abnormalities in children and adolescents with essential hypertension. Am J Ophthalmol 111:205–208

    Article  CAS  Google Scholar 

  • Daniels SR, Lipman MJ, Burke MJ et al (1993) Determinants of retinal vascular abnormalities in children and adolescents with essential hypertension. J Hum Hypertens 7:223–228

    CAS  Google Scholar 

  • Daniels SR, Witt SA, Glascock B et al (2002) Left atrial size in children with hypertension: the influence of obesity, blood pressure, and left ventricular mass. J Pediatr 141:186–190

    Article  Google Scholar 

  • de Simone G, Devereux RB, Daniels SR et al (1995) Effect of growth on variability of left ventricular mass; assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 25:1056–1062

    Article  Google Scholar 

  • Deal JE, Barratt TM, Dillon MJ (1992) Management of hypertensive emergencies. Arch Dis Child 67:1089–1092

    Google Scholar 

  • Du T, Fernandez C, Barshop R et al (2019) Pediatric hypertension guidelines improve prediction of adult cardiovascular outcomes. Hypertension 73:1217–1223

    Article  CAS  Google Scholar 

  • Dwyer T, Sun C, Magnussen CG et al (2013) Cohort profile: the international childhood cardiovascular cohort (i3C) consortium. Int J Epidemiol 42:86–96

    Article  Google Scholar 

  • Foster BJ, Khoury PR, Kimball TR et al (2016) New reference centiles for left ventricular mass relative to lean body mass in children. J Am Echocardiogr 29:441–447

    Article  Google Scholar 

  • Gudbrandsson T, Hansson L, Herlitz H et al (1979) Malignant hypertension. Improving prognosis in a rare disease. Acta Med Scand 206:495–499

    Article  CAS  Google Scholar 

  • Guerin C, Gonthier R, Berthoux FC (1988) Long-term prognosis in malignant and accelerated hypertension. Nephrol Dial Transplant 3:33–37

    CAS  Google Scholar 

  • Hanevold C, Waller J, Daniels D et al (2004) The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the international Pediatric hypertension association. Pediatrics 113:328–333

    Article  Google Scholar 

  • Hoq S, ChenW SSR et al (2002) Childhood blood pressure predicts adult microalbuminuria in African Americans, but not in whites: the Bogalusa heart study. Am J Hypertens 15:1036–1041

    Article  CAS  Google Scholar 

  • Im JA, Lee JW, Shim JY et al (2007) Association between brachial-ankle pulse wave velocity and cardiovascular risk factors in healthy adolescents. J Pediatr 150(247):251

    Google Scholar 

  • Kaess BM, Rong J, Larson MG et al (2012) Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308:875–881

    Article  CAS  Google Scholar 

  • Kavey R-E, Kveselis DA, Atallah N et al (2007) White coat hypertension in childhood: evidence for an end-organ effect. J Pediatr 150:491–497

    Article  Google Scholar 

  • Kenchaiah S, Pfeffer MA (2004) Cardiac remodeling in systemic hypertension. Med Clin North Am 88:115–130

    Article  Google Scholar 

  • Khoury PR, Mitsnefes M, Daniels SR et al (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22:709–714

    Article  Google Scholar 

  • Kochli S, Endes K, Ramona S et al (2019) Obesity, high blood pressure, and physical activity determine vascular phenotype in young children: the examine youth study. Hypertension 73:153–161

    Article  Google Scholar 

  • Koskinen J, Juonala M, Dwyer T et al (2019) Utility of different blood pressure measurement components in childhood to predict adult carotid intima-media thickness. Hypertension 73:335–341

    Article  CAS  Google Scholar 

  • Kulsum-Mecci N, Goss C, Kozel BA et al (2017) Effects of obesity and hypertension on pulse wave velocity in children. J Clin Hypertens 19:221–226

    Article  Google Scholar 

  • Kupferman JC, Batisky DL, Samuels J et al (2018) Ambulatory blood pressure monitoring and neurocognitive function in children with primary hypertension. Pediatr Nephrol 33:1765–1771

    Article  Google Scholar 

  • Lai C-C, Sun D, Cen R et al (2014) Impact of long-term burden of excessive adiposity and elevated blood pressure from childhood on adulthood left ventricular remodeling patterns. J Am Coll Cardiol 64:1580–1587

    Article  Google Scholar 

  • Lande MB, Carson NL, Roy J et al (2006) Effects of childhood primary hypertension on carotid intima media thickness: a matched controlled study. Hypertension 48:40–48

    Article  CAS  Google Scholar 

  • Lande MB, Adams H, Falkner B et al (2009) Parental assessments of internalizing and externalizing behavior and executive function in children with primary hypertension. J Pediatr 154:207–212

    Article  Google Scholar 

  • Lande MB, Adams HR, Kupferman JC et al (2013) A multicenter study of neurocognition in children with hypertension: methods, challenges, and solutions. J Am Soc Hypertens 7:353–362

    Article  Google Scholar 

  • Lande MB, Batisky DL, Kupferman JC et al (2018) Neurocognitive function in children with primary hypertension after initiation of antihypertensive therapy. J Pediatr 195:85–94

    Article  Google Scholar 

  • Lazdam M, Lewandowski AJ, Kylintireas I (2012) Impaired endothelial responses in apparently healthy young people associated with subclinical variation in blood pressure and cardiovascular phenotype. Am J Hypertens 25:46–53

    Article  Google Scholar 

  • Lim HS, Lip GYH (2008) Arterial stiffness: beyond pulse wave velocity and its measurement. J Hum Hypertens 22:656–658

    Article  CAS  Google Scholar 

  • Litwin M, Feber J (2020) Origins of primary hypertension children: early vascular or biological aging? Hypertension 76:1400–1409

    Article  CAS  Google Scholar 

  • Litwin M, Niemirska A, Sladowska J et al (2006) Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol 21:811–819

    Article  Google Scholar 

  • Litwin M, Niemirska, Sladowska-Kozlowska J et al (2010) Regression of target damage in children and adolescents with primary hypertension. Pediatr Nephrol 25:2489–2499

    Google Scholar 

  • Litwin M, Obrycki L, Niemirska A et al (2019) Central systolic blood pressure and central pulse pressure predict left ventricular in hypertensive children. Pediatr Nephrol 34:703–712

    Article  Google Scholar 

  • Logan P, Eustace P, Robinson R (1992) Hypertensive retinopathy: a cause of decreased visual acuity in children. J Pediatr Opthalmol Strabismus 29:287–289

    Article  CAS  Google Scholar 

  • Lona G, Endes K, Kochli S et al (2020) Retinal vessel diameters and blood pressure progression in children. Hypertension 76:450–457

    Article  CAS  Google Scholar 

  • Lubrano R, Travasso E, Raggi C et al (2009) Blood pressure load, proteinuria, and renal function in prehypertensive children. Pediatr Nephrol 24:823–831

    Article  Google Scholar 

  • Magnussen CG (2017) Carotid intima-media thickness and hypertensive heart disease: a short review. Clin Hypertens 23:7

    Google Scholar 

  • McGill HC Jr, Strong JP, Tracy RE et al (1995) Pathobiological determinants of atherosclerosis in youth (PDAY) research group. Relation of a postmortem renal index of hypertension to atherosclerosis in youth. Arterioscler Thromb Vasc Biol 15:2222–2228

    Article  Google Scholar 

  • McMahan CA, Gidding SS, Malcolm GT et al (2007) Comparison of coronary heart disease risk factors in autopsied young adults from the PDAY study with living young adults from the CARDIA study. Cardiovasc Pathol 16:151–158

    Article  Google Scholar 

  • McNiece KL, Gupta-Malhotra M, Samuels J et al (2004) Left ventricular hypertrophy in hypertensive adolescents: analysis of risk by 2004 National High Blood Pressure Education Program Working Group staging criteria. Hypertension 50:392–395

    Article  Google Scholar 

  • McNiece KL, Gupta-Malhotra M, Samuels J et al (2007) Left ventricular hypertrophy in hypertensive adolescents: analysis of risk by 2004 National High Blood Pressure Education Program Working Group staging criteria. Hypertension 50:392–395

    Google Scholar 

  • Mendizabal B, Urbina EM, Becker R et al (2018) Study of high blood pressure in pediatrics: adult hypertension in onset in youth. Hypertension 72:625–631

    Article  CAS  Google Scholar 

  • Muscholl MW, Schunkert H, Muders F et al (1998) Neurohormonal activity and left ventricular geometry in patients with essential arterial hypertension. Am Heart J 135:58–66

    Article  CAS  Google Scholar 

  • Newman WP III, Freedman DS, Voors AW et al (1986) Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis: the Bogalusa Heart Study. N Engl J Med 314:138–144

    Google Scholar 

  • Niboshi A, Hamaoka K, Sakata K et al (2006) Characteristics of brachial-ankle pulse wave velocity in Japanese children. Eur J Pediatr 165:625–629

    Article  Google Scholar 

  • Peretz A, Leotta DF, Sullivan JH et al (2007) Flow mediated dilation of the brachial artery: an investigation of methods requiring further standardization. BNC Cardiovasc Disord 7:11–18

    Article  Google Scholar 

  • Richey PA, DiSessa TG, Hastings MC et al (2008) Ambulatory blood pressure and increased left ventricular mass in children at risk for hypertension. J Pediatr 152:343–348

    Article  Google Scholar 

  • Richey PA, DiSessa TG, Somes GW et al (2010) Left ventricular geometry in children and adolescents with primary hypertension. Am J Hyperten 23:24–29

    Article  Google Scholar 

  • Robbins MA, Elias MF, Elias PK et al (2005) Blood pressure and cognitive function in an African American and a Caucasian-American sample: the Maine-Syracuse study. Psychosom Med 67:707–714

    Article  Google Scholar 

  • Rogowska A, Obrycki L, Kulaga Z et al (2021) Remodeling of retinal microcirculation is associated with subclinical arterial injury in hypertensive children. Hypertension 77:1203–1211

    Article  CAS  Google Scholar 

  • Rovio SP, Pahkala K, Nevlalainen J et al (2017) Cardiovascular risk factors from childhood and midlife cognitive performance: the young Finns study. J Am Coll Cardiol 69:2279–2289

    Article  Google Scholar 

  • Seeman T, Pohl M, Palyzova D et al (2012) Microalbuminuria in children with primary and white-coat hypertension. Pediatr Nephrol 27:461–467

    Article  Google Scholar 

  • Seeman T, Hamdani G, Mitsnefes M (2019) Hypertensive crisis in children and adolescents. Pediatr Nephrol 34:2523–2537

    Article  Google Scholar 

  • Sentha CB, Leisman DE (2016) Left ventricular hypertrophy in children with hypertension: in search of a definition. Curr Hypertens Rep 18:65–72

    Article  Google Scholar 

  • Sharma AP, Mohammed J, Thomas B et al (2013) Nighttime blood pressure, systolic blood pressure variability, and left ventricular mass index in children with hypertension. Pediatr Nephrol 28:1275–1282

    Article  Google Scholar 

  • Shi J, Yang Y, Cheng A et al (2020) Metabolism of vascular smooth muscle cells in vascular disease. Am J Physiol Heart Circ Physiol 319:H613–H631

    Article  CAS  Google Scholar 

  • Sladowska-Kozlowska J, Litwin M, Niemirska A et al (2011) Change in left ventricular geometry during antihypertensive treatment in children with primary hypertension. Pediatr Nephrol 26:2201–2209

    Article  Google Scholar 

  • Slivnivk J, Lampert BC (2019) Hypertension and heart failure. Heart Fail Clin 15:531–541

    Article  Google Scholar 

  • Sorof JM, Alexandrov AV, Cardwell G et al (2003) Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics 111:61–66

    Article  Google Scholar 

  • Sorof JM, Turner J, Martin DS et al (2004) Cardiovascular risk factors and sequelae in hypertensive children identified by referral versus school-based screening. Hypertension 43:214–218

    Article  CAS  Google Scholar 

  • Stabouli S, Papakatsika S, Kotronis G et al (2015) Arterial stiffness and SBP variability in children and adolescents. J Hypertens 33:88–95

    Article  CAS  Google Scholar 

  • Stabouli S, Kollios K, Nika T et al (2020) Ambulatory hemodynamic patterns, obesity, and pulse wave velocity in children and adolescents. Pediatr Nephrol 35:2335–2344

    Article  Google Scholar 

  • Tanaka H, Tatiana T, Suzuki K et al (2003) Acute renal failure due to hypertension: malignant hypertension in an adolescent. Pediatr Int 45:342–344

    Article  Google Scholar 

  • Tran AH, Flynn JT, Becker RC et al (2020) Subclinical systolic and diastolic dysfunction is evidence in youth with elevated blood pressures. Hypertension 75:1551–1556

    Article  CAS  Google Scholar 

  • Urbina EM, Khoury PR, McCoy C et al (2011) Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hyperten 13:332–342

    Article  Google Scholar 

  • Urbina EM, Mendizabal B, Becker RC et al (2019) Association of blood pressure level with left ventricular mass in adolescents. Hypertension 74:590–596

    Article  CAS  Google Scholar 

  • Van den Born BJH, Honnebier UPF, Koopmans RP (2005) Microangiopathic hemolysis and renal failure in malignant hypertension. Hypertension 45:246–251

    Article  Google Scholar 

  • Walker WG, Neaton JD, Culter JA (1992) Renal function changes in hypertensive members of the multiple risk factor intervention trial. Racial and treatment effects. JAMA 268:3085–3091

    Article  CAS  Google Scholar 

  • Yang H, Wright L, Negishi T et al (2018) Research to practice: assessment of left ventricular global longitudinal strain for surveillance of cancer chemotherapeutic-related cardiac dysfunction. JACC Cardiovasc Imaging 11:1196–1201

    Article  Google Scholar 

  • Yang L, Magnussen CG, Yang L et al (2020) Elevated blood pressure in childhood or adolescence and adult cardiovascular outcomes in adulthood: a systematic review. Hypertension 75:948–955

    Article  CAS  Google Scholar 

  • Zampaglione B, Pascale C, Marchiso M et al (1996) Hypertensive urgencies and emergencies: prevalence and clinical presentation. Hypertension 27:144–147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Weaver Jr. .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Weaver, D.J., Mitsnefes, M.M. (2023). Sequelae of Hypertension in Children and Adolescents. In: Flynn, J.T., Ingelfinger, J.R., Brady, T.M. (eds) Pediatric Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-031-06231-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06231-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06230-8

  • Online ISBN: 978-3-031-06231-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics