Skip to main content

New Concepts of the Interplay Between the Gut Microbiota and the Enteric Nervous System in the Control of Motility

  • Conference paper
  • First Online:
The Enteric Nervous System II

Abstract

Propulsive gastrointestinal (GI) motility is critical for digestive physiology and host defense. GI motility is finely regulated by the intramural reflex pathways of the enteric nervous system (ENS). The ENS is in turn regulated by luminal factors: diet and the gut microbiota. The gut microbiota is a vast ecosystem of commensal bacteria, fungi, viruses, and other microbes. The gut microbiota not only regulates the motor programs of the ENS but also is critical for the normal structure and function of the ENS. In this chapter, we highlight recent research that has shed light on the microbial mechanisms of interaction with the ENS involved in the control of motility. Toll-like receptor signaling mechanisms have been shown to maintain the structural integrity of the ENS and the neurochemical phenotypes of enteric neurons, in part through the production of trophic factors including glia-derived neurotrophic factor. Microbiota-derived short-chain fatty acids and/or single-stranded RNA regulates the synthesis of serotonin in enterochromaffin cells, which are involved in the initiation of enteric reflexes, among other functions. Further evidence suggests a crucial role for microbial modulation of serotonin in maintaining the integrity of the ENS through enteric neurogenesis. Understanding the microbial pathways of enteric neural control sheds new light on digestive health and provides novel treatment strategies for GI motility disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  Google Scholar 

  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  Google Scholar 

  3. Aktar R, Parkar N, Stentz R, Baumard L, Parker A, Goldson A, Brion A, Carding S, Blackshaw A, Peiris M (2020) Human resident gut microbe Bacteroides thetaiotaomicron regulates colonic neuronal innervation and neurogenic function. Gut Microbes 11:1745–1757

    Article  Google Scholar 

  4. Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S (2012) Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143:1006–1016.e1004

    Article  CAS  Google Scholar 

  5. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  Google Scholar 

  6. Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, Rumio C (2009) Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 57:1013–1023

    Article  CAS  Google Scholar 

  7. Belkind-Gerson J, Graham HK, Reynolds J, Hotta R, Nagy N, Cheng L, Kamionek M, Shi HN, Aherne CM, Goldstein AM (2017) Colitis promotes neuronal differentiation of Sox2+ and PLP1+ enteric cells. Sci Rep 7:2525

    Article  Google Scholar 

  8. Belkind-Gerson J, Hotta R, Nagy N, Thomas AR, Graham H, Cheng L, Solorzano J, Nguyen D, Kamionek M, Dietrich J et al (2015) Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. Inflamm Bowel Dis 21:870–878

    Article  Google Scholar 

  9. Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, Brierley SM, Ingraham HA, Julius D (2017) Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170:185–198.e116

    Article  CAS  Google Scholar 

  10. Bogunovic M, Davé SH, Tilstra JS, Chang DT, Harpaz N, Xiong H, Mayer LF, Plevy SE (2007) Enteroendocrine cells express functional Toll-like receptors. Am J Physiol GI Liver Physiol 292:G1770–G1783

    CAS  Google Scholar 

  11. Botschuijver S, Roeselers G, Levin E, Jonkers DM, Welting O, Heinsbroek SEM, de Weerd HH, Boekhout T, Fornai M, Masclee AA et al (2017) Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153:1026–1039

    Article  Google Scholar 

  12. Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, Banzato S, Grillo AR, Spagnol L, De Caro R et al (2013) Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145:1323–1333

    Article  CAS  Google Scholar 

  13. Brun P, Gobbo S, Caputi V, Spagnol L, Schirato G, Pasqualin M, Levorato E, Palù G, Giron MC, Castagliuolo I (2015) Toll like receptor-2 regulates production of glial-derived neurotrophic factors in murine intestinal smooth muscle cells. Mol Cell Neurosci 68:24–35

    Article  CAS  Google Scholar 

  14. Burgueño JF, Abreu MT (2020) Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol 17:263–278

    Article  Google Scholar 

  15. Burgueño JF, Barba A, Eyre E, Romero C, Neunlist M, Fernández E (2016) TLR2 and TLR9 modulate enteric nervous system inflammatory responses to lipopolysaccharide. J Neuroinflammation 13:187

    Article  Google Scholar 

  16. Caputi V, Marsilio I, Cerantola S, Roozfarakh M, Lante I, Galuppini F, Rugge M, Napoli E, Giulivi C, Orso G et al (2017) Toll-like receptor 4 modulates small intestine neuromuscular function through nitrergic and purinergic pathways. Front Pharmacol 8:350

    Article  Google Scholar 

  17. Caputi V, Marsilio I, Filpa V, Cerantola S, Orso G, Bistoletti M, Paccagnella N, De Martin S, Montopoli M, Dall’Acqua S et al (2017) Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. Br J Pharmacol 174:3623–3639

    Article  CAS  Google Scholar 

  18. Cerantola S, Caputi V, Marsilio I, Ridolfi M, Faggin S, Bistoletti M, Giaroni C, Giron MC (2020) Involvement of enteric glia in small intestine neuromuscular dysfunction of Toll-like receptor 4-deficient mice. Cell 9:838

    Article  CAS  Google Scholar 

  19. Champagne-Jorgensen K, Kunze WA, Forsythe P, Bienenstock J, McVey Neufeld KA (2019) Antibiotics and the nervous system: more than just the microbes? Brain Behav Immun 77:7–15

    Article  CAS  Google Scholar 

  20. Chandrasekharan B, Saeedi BJ, Alam A, Houser M, Srinivasan S, Tansey M, Jones R, Nusrat A, Neish AS (2019) Interactions between commensal bacteria and enteric neurons, via FPR1 induction of ROS, increase gastrointestinal motility in mice. Gastroenterology 157:179–192.e172

    Article  CAS  Google Scholar 

  21. Cherbut C, Ferrier L, Rozé C, Anini Y, Blottière H, Lecannu G, Galmiche JP (1998) Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol GI Liver Physiol 275:G1415–G1422

    CAS  Google Scholar 

  22. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673

    Article  CAS  Google Scholar 

  23. Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM (2014) Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 26:98–107

    Article  CAS  Google Scholar 

  24. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K (2019) The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 16:461–478

    Article  Google Scholar 

  25. De Vadder F, Grasset E, Mannerås Holm L, Karsenty G, Macpherson AJ, Olofsson LE, Bäckhed F (2018) Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci U S A 115:6458

    Article  CAS  Google Scholar 

  26. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43:164–174

    Article  Google Scholar 

  27. Dickson EJ, Heredia DJ, Smith TK (2010) Critical role of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in the initiation, generation, and propagation of the murine colonic migrating motor complex. Am J Physiol GI Liver Physiol 299:G144–G157

    CAS  Google Scholar 

  28. Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK, Eraslan G, Dionne D, Cuoco MS, Goder-Reiser MN, Sharova T et al (2020) The human and mouse enteric nervous system at single-cell resolution. Cell 182:1606–1622.e1623

    Article  CAS  Google Scholar 

  29. Dupont JR, Jervis H, Sprinz H (1965) A kinetic study of the myenteric neurones: size variations in the neurovegetative periphery with body weight and organ size. Am J Anat 116:335–339

    Article  CAS  Google Scholar 

  30. Dupont JR, Jervis HR, Sprinz H (1965) Auerbach’s plexus of the rat cecum in relation to the germfree state. J Comp Neurol 125:11–18

    Article  CAS  Google Scholar 

  31. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  Google Scholar 

  32. Forcén R, Latorre E, Pardo J, Alcalde AI, Murillo MD, Grasa L (2016) Toll-like receptors 2 and 4 exert opposite effects on the contractile response induced by serotonin in mouse colon: role of serotonin receptors. Exp Physiol 101:1064–1074

    Article  Google Scholar 

  33. Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, Eubanks S, Harris M, Pappas TN, Takahashi T (2003) Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol 284:R1269–R1276

    Article  CAS  Google Scholar 

  34. Fung C, Vanden Berghe P (2020) Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 77:4505–4522

    Article  CAS  Google Scholar 

  35. Fung TC, Vuong HE, Luna CDG, Pronovost GN, Aleksandrova AA, Riley NG, Vavilina A, McGinn J, Rendon T, Forrest LR et al (2019) Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat Microbiol 4:2064–2073

    Article  Google Scholar 

  36. Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    Article  CAS  Google Scholar 

  37. Ge X, Ding C, Zhao W, Xu L, Tian H, Gong J, Zhu M, Li J, Li N (2017) Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med 15:13

    Article  Google Scholar 

  38. Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414

    Article  CAS  Google Scholar 

  39. Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO (2003) GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 130:2187–2198

    Article  CAS  Google Scholar 

  40. Grasa L, Abecia L, Forcén R, Castro M, de Jalón JAG, Latorre E, Alcalde AI, Murillo MD (2015) Antibiotic-induced depletion of murine microbiota induces mild inflammation and changes in Toll-like receptor patterns and intestinal motility. Microb Ecol 70:835–848

    Article  CAS  Google Scholar 

  41. Gulbransen BD, Sharkey KA (2012) Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 9:625–632

    Article  CAS  Google Scholar 

  42. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052

    Article  CAS  Google Scholar 

  43. Heuckeroth RO (2018) Hirschsprung disease - integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 15:152–167

    Article  Google Scholar 

  44. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  CAS  Google Scholar 

  45. Hyland NP, Cryan JF (2016) Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev Biol 417:182–187

    Article  CAS  Google Scholar 

  46. Joseph NM, He S, Quintana E, Kim Y-G, Núñez G, Morrison SJ (2011) Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest 121:3398–3411

    Article  CAS  Google Scholar 

  47. Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, Pettersson S, Pachnis V (2015) Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85:289–295

    Article  CAS  Google Scholar 

  48. Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, Bohórquez DV (2018) A gut-brain neural circuit for nutrient sensory transduction. Science 361:eaat5236

    Article  Google Scholar 

  49. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461

    Article  Google Scholar 

  50. Keating DJ, Spencer NJ (2010) Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology 138:659–670 670.e651–652

    Article  Google Scholar 

  51. Kulkarni S, Micci MA, Leser J, Shin C, Tang SC, Fu YY, Liu L, Li Q, Saha M, Li C et al (2017) Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci U S A 114:E3709–e3718

    Article  CAS  Google Scholar 

  52. Kunze WA, Mao YK, Wang B, Huizinga JD, Ma X, Forsythe P, Bienenstock J (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 13:2261–2270

    Article  Google Scholar 

  53. Kurahashi M, Zheng H, Dwyer L, Ward SM, Koh SD, Sanders KM (2011) A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J Physiol 589:697–710

    Article  CAS  Google Scholar 

  54. Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, Pachnis V (2011) Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 121:3412–3424

    Article  CAS  Google Scholar 

  55. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  Google Scholar 

  56. Liu M-T, Kuan Y-H, Wang J, Hen R, Gershon MD (2009) 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 29:9683–9699

    Article  CAS  Google Scholar 

  57. Lomasney KW, Houston A, Shanahan F, Dinan TG, Cryan JF, Hyland NP (2014) Selective influence of host microbiota on cAMP-mediated ion transport in mouse colon. Neurogastroenterol Motil 26:887–890

    Article  CAS  Google Scholar 

  58. Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, Lambas-Senas L, Wiborg O, Haddjeri N, Piñeyro G et al (2007) Serotonin 4 (5-HT4) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 55:712–725

    Article  CAS  Google Scholar 

  59. Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, Schwartz TW (2018) Enterochromaffin 5-HT cells – a major target for GLP-1 and gut microbial metabolites. Mol Metab 11:70–83

    Article  CAS  Google Scholar 

  60. Makki K, Deehan EC, Walter J, Bäckhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–715

    Article  CAS  Google Scholar 

  61. Mao YK, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA (2013) Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun 4:1465

    Article  Google Scholar 

  62. Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10:473

    Article  CAS  Google Scholar 

  63. May-Zhang AA, Tycksen E, Southard-Smith AN, Deal KK, Benthal JT, Buehler DP, Adam M, Simmons AJ, Monaghan JR, Matlock BK et al (2021) Combinatorial transcriptional profiling of mouse and human enteric neurons identifies shared and disparate subtypes in situ. Gastroenterology 160:755–770.e726

    Article  CAS  Google Scholar 

  64. McVey Neufeld KA, Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA (2015) The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol Motil 27:627–636

    Article  CAS  Google Scholar 

  65. Moore MW, Klein RD, Fariñas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    Article  CAS  Google Scholar 

  66. Morarach K, Mikhailova A, Knoflach V, Memic F, Kumar R, Li W, Ernfors P, Marklund U (2021) Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat Neurosci 24:34–46

    Article  CAS  Google Scholar 

  67. Muller PA, Matheis F, Schneeberger M, Kerner Z, Jové V, Mucida D (2020) Microbiota-modulated CART+ enteric neurons autonomously regulate blood glucose. Science 370:314–321

    Article  CAS  Google Scholar 

  68. Obata Y, Castaño Á, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Agüero MG, Yilmaz B, Lopes R, Huseynova A et al (2020) Neuronal programming by microbiota regulates intestinal physiology. Nature 578:284–289

    Article  CAS  Google Scholar 

  69. Obata Y, Pachnis V (2016) The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151:836–844

    Article  CAS  Google Scholar 

  70. Price AE, Shamardani K, Lugo KA, Deguine J, Roberts AW, Lee BL, Barton GM (2018) A map of Toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity 49:560–575.e566

    Article  CAS  Google Scholar 

  71. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  Google Scholar 

  72. Quigley EM (2013) Gut bacteria in health and disease. Gastroenterol Hepatol 9:560–569

    Google Scholar 

  73. Ranade SS, Syeda R, Patapoutian A (2015) Mechanically activated ion channels. Neuron 87:1162–1179

    Article  CAS  Google Scholar 

  74. Reichardt F, Chassaing B, Nezami BG, Li G, Tabatabavakili S, Mwangi S, Uppal K, Liang B, Vijay-Kumar M, Jones D et al (2017) Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and lipopolysaccharide-induced TLR4 signalling. J Physiol 595:1831–1846

    Article  CAS  Google Scholar 

  75. Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403

    Article  CAS  Google Scholar 

  76. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9:1081–1088

    Article  CAS  Google Scholar 

  77. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  CAS  Google Scholar 

  78. Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9:633–645

    Article  CAS  Google Scholar 

  79. Seguella L, Gulbransen BD (2021) Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol 18:571-587

    Google Scholar 

  80. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F, Ohlsson C (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27:1357–1367

    Article  Google Scholar 

  81. Smith TK, Koh SD (2017) A model of the enteric neural circuitry underlying the generation of rhythmic motor patterns in the colon: the role of serotonin. Am J Physiol GI Liver Physiol 312:G1–G14

    Google Scholar 

  82. Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, Neunlist M (2010) Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138:1772–1782

    Article  CAS  Google Scholar 

  83. Soret R, Schneider S, Bernas G, Christophers B, Souchkova O, Charrier B, Righini-Grunder F, Aspirot A, Landry M, Kembel SW et al (2020) Glial cell derived neurotrophic factor induces enteric neurogenesis and improves colon structure and function in mouse models of Hirschsprung disease. Gastroenterology 159:1824–1838.e1817

    Article  CAS  Google Scholar 

  84. Spencer NJ, Hu H (2020) Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 17:338–351

    Article  Google Scholar 

  85. Spencer NJ, Nicholas SJ, Robinson L, Kyloh M, Flack N, Brookes SJ, Zagorodnyuk VP, Keating DJ (2011) Mechanisms underlying distension-evoked peristalsis in guinea pig distal colon: is there a role for enterochromaffin cells? Am J Physiol GI Liver Physiol 301:G519–G527

    CAS  Google Scholar 

  86. Spohn SN, Mawe GM (2017) Non-conventional features of peripheral serotonin signalling - the gut and beyond. Nat Rev Gastroenterol Hepatol 14:412–420

    Article  CAS  Google Scholar 

  87. Sugisawa E, Takayama Y, Takemura N, Kondo T, Hatakeyama S, Kumagai Y, Sunagawa M, Tominaga M, Maruyama K (2020) RNA sensing by gut Piezo1 is essential for systemic serotonin synthesis. Cell 182:609–624.e621

    Article  CAS  Google Scholar 

  88. Takaki M, Goto K, Kawahara I (2014) The 5-hydroxytryptamine 4 receptor agonist-induced actions and enteric neurogenesis in the gut. J Neurogastroenterol Motil 20:17–30

    Article  Google Scholar 

  89. Terry N, Margolis KG (2017) Serotonergic mechanisms regulating the GI tract: experimental evidence and therapeutic relevance. Handb Exp Pharmacol 239:319–342

    Article  CAS  Google Scholar 

  90. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371

    Article  CAS  Google Scholar 

  91. Uesaka T, Nagashimada M, Enomoto H (2013) GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors. J Neurosci 33:16372–16382

    Article  CAS  Google Scholar 

  92. Uesaka T, Nagashimada M, Enomoto H (2015) Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci 35:9879–9888

    Article  CAS  Google Scholar 

  93. van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin J-B, Vicentini FA, Keenan CM, Ramay HR, Samara J et al (2020) Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun 11:2577

    Article  Google Scholar 

  94. Vicentini FA, Keenan CM, Wallace LM., Woods C, Cavin J-B, Flockton AR, Macklin WB, Belkind-Gerson J, Hirota SA, Sharkey KA (2021) Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome 9:210

    Google Scholar 

  95. Vincent AD, Wang XY, Parsons SP, Khan WI, Huizinga JD (2018) Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am J Physiol GI Liver Physiol 315:G896–G907

    Google Scholar 

  96. Walsh KT, Zemper AE (2019) The enteric nervous system for epithelial researchers: basic anatomy, techniques, and interactions with the epithelium. Cell Mol Gastroenterol Hepatol 8:369–378

    Article  Google Scholar 

  97. Wang H, Kwon YH, Dewan V, Vahedi F, Syed S, Fontes ME, Ashkar AA, Surette MG, Khan WI (2019) TLR2 plays a pivotal role in mediating mucosal serotonin production in the gut. J Immunol 202:3041–3052

    Article  CAS  Google Scholar 

  98. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106:3698–3703

    Article  CAS  Google Scholar 

  99. Wright CM, Schneider S, Smith-Edwards KM, Mafra F, Leembruggen AJL, Gonzalez MV, Kothakapa DR, Anderson JB, Maguire BA, Gao T et al (2021) scRNA-Seq reveals new enteric nervous system roles for GDNF, NRTN, and TBX3. Cell Mol Gastroenterol Hepatol 11:1548–1592.e1541

    Article  Google Scholar 

  100. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276

    Article  CAS  Google Scholar 

  101. Yarandi SS, Kulkarni S, Saha M, Sylvia KE, Sears CL, Pasricha PJ (2020) Intestinal bacteria maintain adult enteric nervous system and nitrergic neurons via Toll-like receptor 2-induced neurogenesis in mice. Gastroenterology 159:200–213.e208

    Article  CAS  Google Scholar 

  102. Yoon H, Schaubeck M, Lagkouvardos I, Blesl A, Heinzlmeir S, Hahne H, Clavel T, Panda S, Ludwig C, Kuster B et al (2018) Increased pancreatic protease activity in response to antibiotics impairs gut barrier and triggers colitis. Cell Mol Gastroenterol Hepatol 6:370–388.e373

    Article  Google Scholar 

  103. Yu Y, Chen JH, Li H, Yang Z, Du X, Hong L, Liao H, Jiang L, Shi J, Zhao L et al (2015) Involvement of 5-HT3 and 5-HT4 receptors in colonic motor patterns in rats. Neurogastroenterol Motil 27:914–928

    Article  CAS  Google Scholar 

  104. Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G et al (2018) Molecular architecture of the mouse nervous system. Cell 174:999–1014.e1022

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflicts of interest.

Author Contributions

All authors reviewed the literature and drafted the manuscript, critically reviewed the content, revised the manuscript, and approved it for submission.

Funding

This work was supported by grants from the Canadian Institutes of Health Research (SAH and KAS). FAV was supported by the National Council for Scientific and Technological Development (CNPq), Brazil. TF and SGR were supported by Alberta Innovates Summer Research Studentships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Sharkey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vicentini, F.A., Fahlman, T., Raptis, S.G., Wallace, L.E., Hirota, S.A., Sharkey, K.A. (2022). New Concepts of the Interplay Between the Gut Microbiota and the Enteric Nervous System in the Control of Motility. In: Spencer, N.J., Costa, M., Brierley, S.M. (eds) The Enteric Nervous System II. Advances in Experimental Medicine and Biology, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-031-05843-1_6

Download citation

Publish with us

Policies and ethics