Skip to main content

Serotonergic Mechanisms Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance

  • Chapter
  • First Online:
Gastrointestinal Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 239))

Abstract

Serotonin (5-hydroxytryptamine; 5-HT) is best known as a neurotransmitter critical for central nervous system (CNS) development and function. 95% of the body’s serotonin, however, is produced in the intestine where it has been increasingly recognized for its hormonal, autocrine, paracrine, and endocrine actions. This chapter provides the most current knowledge of the critical autocrine and paracrine roles of 5-HT in intestinal motility and inflammation as well as its function as a hormone in osteocyte homeostasis. Therapeutic applications in each of these areas are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamec R, Burton P, Blundell J, Murphy DL, Holmes A (2006) Vulnerability to mild predator stress in serotonin transporter knockout mice. Behav Brain Res 170(1):126–140

    Article  CAS  PubMed  Google Scholar 

  • Ahlman H (1985) Serotonin and carcinoid tumors. J Cardiovasc Pharmacol 7(Suppl 7):S79–S85

    Article  CAS  PubMed  Google Scholar 

  • Andresen V, Montori VM, Keller J, West CP, Layer P, Camilleri M (2008) Effects of 5-hydroxytryptamine (serotonin) type 3 antagonists on symptom relief and constipation in nonconstipated irritable bowel syndrome: a systematic review and meta-analysis of randomized controlled trials. Clin Gastroenterol Hepatol 6(5):545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arreola R, Becerril-Villanueva E, Cruz-Fuentes C et al (2015) Immunomodulatory effects mediated by serotonin. J Immunol Res 2015:354957

    PubMed  PubMed Central  Google Scholar 

  • Askenase PW, Bursztajn S, Gershon MD, Gershon RK (1980) T cell-dependent mast cell degranulation and release of serotonin in murine delayed-type hypersensitivity. J Exp Med 152(5):1358–1374

    Article  CAS  PubMed  Google Scholar 

  • Askenase PW, Herzog WR, Millet I et al (1991) Serotonin initiation of delayed-type hypersensitivity: mediation by a primitive Thy-1+ antigen-specific clone or by specific monoclonal IgE antibody. Skin Pharmacol 4(Suppl 1):25–42

    PubMed  Google Scholar 

  • Baganz NL, Blakely RD (2013) A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Nerosci 4(1):48–63

    Article  CAS  Google Scholar 

  • Balasuriya GK, Hill-Yardin EL, Gershon MD, Bornstein JC (2016) A sexually dimorphic effect of cholera toxin: rapid changes in colonic motility mediated via a 5-HT3 receptor dependent pathway in female C57Bl/6 mice. J Physiol 594(15):4325–4338

    Article  CAS  PubMed  Google Scholar 

  • Barbara G, Wang B, Stanghellini V et al (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132(1):26–37

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Rawadi G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5(2):73–80

    Article  PubMed  Google Scholar 

  • Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol 24(2):99–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayliss WM, Starling EH (1900) The movements and the innervation of the large intestine. J Physiol 26(1–2):107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayliss WM, Starling EH (1901) The movements and innervation of the small intestine. J Physiol 26(3–4):125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beikmann BS, Tomlinson ID, Rosenthal SJ, Andrews AM (2013) Serotonin uptake is largely mediated by platelets versus lymphocytes in peripheral blood cells. ACS Chem Nerosci 4(1):161–170

    Article  CAS  Google Scholar 

  • Belai A, Boulos PB, Robson T, Burnstock G (1997) Neurochemical coding in the small intestine of patients with Crohn’s disease. Gut 40(6):767–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkind-Gerson J, Hotta R, Nagy N et al (2015) Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. Inflamm Bowel Dis 21(4):870–878

    Article  PubMed  Google Scholar 

  • Bertrand PP, Kunze WA, Furness JB, Bornstein JC (2000) The terminals of myenteric intrinsic primary afferent neurons of the guinea-pig ileum are excited by 5-hydroxytryptamine acting at 5-hydroxytryptamine-3 receptors. Neuroscience 101(2):459–469

    Article  CAS  PubMed  Google Scholar 

  • Bertrand PP, Barajas-Espinosa A, Neshat S, Bertrand RL, Lomax AE (2010) Analysis of real-time serotonin (5-HT) availability during experimental colitis in mouse. Am J Physiol Gastrointest Liver Physiol 298(3):G446–G455

    Article  CAS  PubMed  Google Scholar 

  • Bian ZX, Qin HY, Tian SL, Qi SD (2011) Combined effect of early life stress and acute stress on colonic sensory and motor responses through serotonin pathways: differences between proximal and distal colon in rats. Stress 14(4):448–458

    Article  CAS  PubMed  Google Scholar 

  • Bischoff SC, Mailer R, Pabst O et al (2009) Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice. Am J Physiol Gastrointest Liver Physiol 296(3):G685–G695

    Article  CAS  PubMed  Google Scholar 

  • Bonewald L (2011) The holy grail of high bone mass. Nat Med 17(6):657–658

    Article  CAS  PubMed  Google Scholar 

  • Booth DA, Gibson EL, Baker BJ (1986) Gastromotor mechanism of fenfluramine anorexia. Appetite 7(Suppl):57–69

    Article  CAS  PubMed  Google Scholar 

  • Boyden LM, Mao J, Belsky J et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346(20):1513–1521

    Article  CAS  PubMed  Google Scholar 

  • Brown PM, Drossman DA, Wood AJ et al (2011) The tryptophan hydroxylase inhibitor LX1031 shows clinical benefit in patients with nonconstipating irritable bowel syndrome. Gastroenterology 141(2):507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummelte S, Mc Glanaghy E, Bonnin A, Oberlander TF (2016) Developmental changes in serotonin signaling: implications for early brain function, behavior and adaptation. Neuroscience pii: S0306-4522(16)00177-9. doi:10.1016/j.neuroscience.2016.02.037

    Google Scholar 

  • Bruyere O, Reginster JY (2015) Osteoporosis in patients taking selective serotonin reuptake inhibitors: a focus on fracture outcome. Endocrine 48(1):65–68

    Article  CAS  PubMed  Google Scholar 

  • Buhner S, Schemann M (2012) Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta 1822(1):85–92

    Article  CAS  PubMed  Google Scholar 

  • Bulbring E, Crema A (1958) Observations concerning the action of 5-hydroxytryptamine on the peristaltic reflex. Br J Pharmacol Chemother 13(4):444–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulbring E, Crema A (1959a) The action of 5-hydroxytryptamine, 5-hydroxytryptophan and reserpine on intestinal peristalsis in anaesthetized guinea-pigs. J Physiol 146(1):29–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulbring E, Crema A (1959b) The release of 5-hydroxytryptamine in relation to pressure exerted on the intestinal mucosa. J Physiol 146(1):18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulbring E, Gershon MD (1968) Serotonin participation in the vagal inhibitory pathway to the stomach. Adv Pharmacol 6(Pt A):323–333

    Article  CAS  PubMed  Google Scholar 

  • Bulbring E, Lin RC (1958) The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-HT and its release in relation to intraluminal pressure and propulsive activity. J Physiol 140(3):381–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulbring E, Lin RC, Schofield G (1958) An investigation of the peristaltic reflex in relation to anatomical observations. Q J Exp Physiol Cogn Med Sci 43(1):26–37

    CAS  PubMed  Google Scholar 

  • Chen JX, Pan H, Rothman TP, Wade PR, Gershon MD (1998) Guinea pig 5-HT transporter: cloning, expression, distribution, and function in intestinal sensory reception. Am J Physiol 275(3 Pt 1):G433–G448

    CAS  PubMed  Google Scholar 

  • Chen JJ, Zhishan L, Pan H et al (2001) Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high affinity serotonin transporter (SERT): abnormal intestinal motility and the expression of cation transporters. J Neurosci 21(16):6348–6361

    CAS  PubMed  Google Scholar 

  • Chin A, Svejda B, Gustafsson BI et al (2012) The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffin cell serotonin secretion. Am J Physiol Gastrointest Liver Physiol 302(3):G397–G405

    Article  CAS  PubMed  Google Scholar 

  • Choung RS, Ferguson DD, Murray JA et al (2008) A novel partial 5HT3 agonist DDP733 after a standard refluxogenic meal reduces reflux events: a randomized, double-blind, placebo-controlled pharmacodynamic study. Aliment Pharmacol Ther 27(5):404–411

    Article  CAS  PubMed  Google Scholar 

  • Coates MD, Mahoney CR, Linden DR et al (2004a) Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 126(7):1657–1664

    Article  CAS  PubMed  Google Scholar 

  • Coates MD, Mahoney CR, Linden DR et al (2004b) Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and IBS. Gastroenterology 126(7):1657–1664

    Article  CAS  PubMed  Google Scholar 

  • Coleman NS, Marciani L, Blackshaw E et al (2003) Effect of a novel 5-HT3 receptor agonist MKC-733 on upper gastrointestinal motility in humans. Aliment Pharmacol Ther 18(10):1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Coleman NS, Foley S, Dunlop SP et al (2006) Abnormalities of serotonin metabolism and their relation to symptoms in untreated celiac disease. Clin Gastroenterol Hepatol 4(7):874–881

    Article  CAS  PubMed  Google Scholar 

  • Cook EH Jr, Arora RC, Anderson GM et al (1993) Platelet serotonin studies in hyperserotonemic relatives of children with autistic disorder. Life Sci 52(25):2005–2015

    Article  PubMed  Google Scholar 

  • Costall B, Domeney AM, Naylor RJ, Tattersall FD (1986) 5-Hydroxytryptamine M-receptor antagonism to prevent cisplatin-induced emesis. Neuropharmacology 25(8):959–961

    Article  CAS  PubMed  Google Scholar 

  • Costedio MM, Coates MD, Danielson AB et al (2008) Serotonin signaling in diverticular disease. J Gastrointest Surg 12(8):1439–1445

    Article  PubMed  PubMed Central  Google Scholar 

  • Crane JD, Palanivel R, Mottillo EP et al (2015) Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med 21(2):166–172

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Niziolek PJ, MacDonald BT et al (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17(6):684–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Maeyer JH, Lefebvre RA, Schuurkes JA (2008) 5-HT4 receptor agonists: similar but not the same. Neurogastroenterol Motil 20(2):99–112

    Article  CAS  PubMed  Google Scholar 

  • Diem SJ, Blackwell TL, Stone KL et al (2007) Use of antidepressants and rates of hip bone loss in older women: the study of osteoporotic fractures. Arch Intern Med 167(12):1240–1245

    Article  PubMed  Google Scholar 

  • Du P, O’Grady G, Gibbons SJ et al (2010) Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks. Biophys J 98(9):1772–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducy P (2011) 5-HT and bone biology. Curr Opin Pharmacol 11(1):34–38

    Article  CAS  PubMed  Google Scholar 

  • El-Salhy M, Danielsson A, Stenling R, Grimelius L (1997) Colonic endocrine cells in inflammatory bowel disease. J Intern Med 242(5):413–419

    Article  CAS  PubMed  Google Scholar 

  • Eom CS, Lee HK, Ye S, Park SM, Cho KH (2012) Use of selective serotonin reuptake inhibitors and risk of fracture: a systematic review and meta-analysis. J Bone Miner Res 27(5):1186–1195

    Article  CAS  PubMed  Google Scholar 

  • Erde SM, Sherman D, Gershon MD (1985) Morphology and serotonergic innervation of physiologically identified cells of the guinea pig’s myenteric plexus. J Neurosci 5(3):617–633

    CAS  PubMed  Google Scholar 

  • Erspamer V (1940) Pharmacology of enteramine. I. Action of acetone extract of rabbit stomach mucosa on blood pressure and on surviving isolated organs. Archiv fur Experimentelle Pathologie und Pharmakologie 196:343–346

    Article  CAS  Google Scholar 

  • Erspamer V, Asero B (1952) Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169(4306):800–801

    Article  CAS  PubMed  Google Scholar 

  • Evangelista S (2007) Drug evaluation: pumosetrag for the treatment of irritable bowel syndrome and gastroesophageal reflux disease. Curr Opin Investig Drugs 8(5):416–422

    CAS  PubMed  Google Scholar 

  • Evans BW, Clark WK, Moore DJ, Whorwell PJ (2007) Tegaserod for the treatment of irritable bowel syndrome and chronic constipation. Cochrane Database Syst Rev 4:CD003960

    Google Scholar 

  • Fang X, Liu S, Wang XY et al (2008) Neurogastroenterology of tegaserod (HTF 919) in the submucosal division of the guinea-pig and human enteric nervous system. Neurogastroenterol Motil 20(1):80–93

    CAS  PubMed  Google Scholar 

  • Feuer AJ, Demmer RT, Thai A, Vogiatzi MG (2015) Use of selective serotonin reuptake inhibitors and bone mass in adolescents: an NHANES study. Bone 78:28–33

    Article  CAS  PubMed  Google Scholar 

  • Fiorica-Howells E, Maroteaux L, Gershon MD (2000) Serotonin and the 5-HT(2B) receptor in the development of enteric neurons. J Neurosci 20(1):294–305

    CAS  PubMed  Google Scholar 

  • Foley S, Garsed K, Singh G et al (2011) Impaired uptake of serotonin by platelets from patients with irritable bowel syndrome correlates with duodenal immune activation. Gastroenterology 140(5):1434–1443 e1431

    Article  CAS  PubMed  Google Scholar 

  • Galligan JJ, LePard KJ, Schneider DA, Zhou X (2000) Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst 81(1–3):97–103

    Article  CAS  PubMed  Google Scholar 

  • Galligan JJ, Pan H, Messori E (2003) Signalling mechanism coupled to 5-hydroxytryptamine4 receptor-mediated facilitation of fast synaptic transmission in the guinea-pig ileum myenteric plexus. Neurogastroenterol Motil 15(5):523–529

    Article  CAS  PubMed  Google Scholar 

  • Geller E, Yuwiler A, Freeman BJ, Ritvo E (1988) Platelet size, number, and serotonin content in blood of autistic, childhood schizophrenic, and normal children. J Autism Dev Disord 18(1):119–126

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD (2004) Review article: serotonin receptors and transporters– roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther 20(Suppl 7):3–14

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD (2005) Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol 39(5 Suppl 3):S184–S193

    Article  PubMed  Google Scholar 

  • Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20(1):14–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershon MD (2016) 5-HT4-mediated neuroprotection: a new therapeutic modality on the way? Am J Physiol Gastrointest Liver Physiol 310(10):G766–G767

    Article  PubMed  Google Scholar 

  • Gershon MD, Ross LL (1962) Studies on the relationship of 5-hydroxytryptamine and the enterochromaffin cell to anaphylactic shock in mice. J Exp Med 115:367–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132(1):397–414

    Article  CAS  PubMed  Google Scholar 

  • Gershon RK, Askenase PW, Gershon MD (1975) Requirement for vasoactive amines for production of delayed-type hypersensitvity skin reactions. J Exp Med 142(3):732–747

    Article  CAS  PubMed  Google Scholar 

  • Ghia JE, Li N, Wang H et al (2009) Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137(5):1649–1660

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Altman RB, Klein TE (2011) Bisphosphonates pathway. Pharmacogenet Genomics 21(1):50–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto K, Kawahara I, Inada H et al (2016) Activation of 5-HT4 receptors facilitates neurogenesis from transplanted neural stem cells in the anastomotic ileum. J Physiol Sci 66(1):67–76

    Article  CAS  PubMed  Google Scholar 

  • Goyal MS, Venkatesh S, Milbrandt J, Gordon JI, Raichle ME (2015) Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. Proc Natl Acad Sci U S A 112(46):14105–14112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood-Van Meerveld B, Venkova K, Hicks G, Dennis E, Crowell MD (2006) Activation of peripheral 5-HT receptors attenuates colonic sensitivity to intraluminal distension. Neurogastroenterol Motil 18(1):76–86

    Article  CAS  PubMed  Google Scholar 

  • Grider JR, Foxx-Orenstein AE, Jin JG (1998) 5-Hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine. Gastroenterology 115(2):370–380

    Article  CAS  PubMed  Google Scholar 

  • Haney EM, Chan BK, Diem SJ et al (2007) Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men. Arch Intern Med 167(12):1246–1251

    Article  PubMed  Google Scholar 

  • Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198–213

    Article  CAS  PubMed  Google Scholar 

  • Heredia DJ, Gershon MD, Koh SD, Corrigan RD, Okamoto T, Smith TK (2013) Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J Physiol 591(23):5939–5957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillsley K, Grundy D (1998) Sensitivity to 5-hydroxytryptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum. J Physiol 509(Pt 3):717–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillsley K, Kirkup AJ, Grundy D (1998) Direct and indirect actions of 5-hydroxytryptamine on the discharge of mesenteric afferent fibres innervating the rat jejunum. J Physiol 506(Pt 2):551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman JM, McKnight ND, Sharkey KA, Mawe GM (2011) The relationship between inflammation-induced neuronal excitability and disrupted motor activity in the guinea pig distal colon. Neurogastroenterol Motil 23(7):673 e279

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JM, Tyler K, MacEachern SJ et al (2012) Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4):844–854 e844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornby PJ (2015) Drug discovery approaches to irritable bowel syndrome. Expert Opin Drug Discovery 10(8):809–824

    Article  CAS  Google Scholar 

  • Hotta R, Cheng LS, Graham HK et al (2016) Delivery of enteric neural progenitors with 5-HT4 agonist-loaded nanoparticles and thermosensitive hydrogel enhances cell proliferation and differentiation following transplantation in vivo. Biomaterials 88:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71(4):533–554

    Article  CAS  PubMed  Google Scholar 

  • Hughes FB, Brodie BB (1959) The mechanism of serotonin and catecholamine uptake by platelets. J Pharmacol Exp Ther 127:96–102

    CAS  PubMed  Google Scholar 

  • Idzko M, Panther E, Stratz C et al (2004) The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol 172(10):6011–6019

    Article  CAS  PubMed  Google Scholar 

  • Ireland SJ, Tyers MB (1987) Pharmacological characterization of 5-hydroxytryptamine-induced depolarization of the rat isolated vagus nerve. Br J Pharmacol 90(1):229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson JF (2004) Options for patients with irritable bowel syndrome: contrasting traditional and novel serotonergic therapies. Neurogastroenterol Motil 16(6):701–711

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Patel MS, Levasseur R et al (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157(2):303–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedees MH, Guz Y, Grigoryan M, Teitelman G (2013) Functional activity of murine intestinal mucosal cells is regulated by the glucagon-like peptide-1 receptor. Peptides 48:36–44

    Article  CAS  PubMed  Google Scholar 

  • Kepser LJ, Homberg JR (2015) The neurodevelopmental effects of serotonin: a behavioural perspective. Behav Brain Res 277:3–13

    Article  CAS  PubMed  Google Scholar 

  • Kerr TM, Muller CL, Miah M et al (2013) Genetic background modulates phenotypes of serotonin transporter Ala56 knock-in mice. Mol Autism 4(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kidd M, Gustafsson BI, Drozdov I, Modlin IM (2009) IL1beta- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn’s disease. Neurogastroenterol Motil 21(4):439–450

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Bridle BW, Ghia JE et al (2013) Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation. J Immunol 190(9):4795–4804

    Article  CAS  PubMed  Google Scholar 

  • Kode A, Obri A, Paone R, Kousteni S, Ducy P, Karsenty G (2014) Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nat Med 20(11):1228–1229

    Article  CAS  PubMed  Google Scholar 

  • Lesch KP, Wolozin BL, Murphy DL, Reiderer P (1993) Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem 60(6):2319–2322

    Article  CAS  PubMed  Google Scholar 

  • Lesurtel M, Graf R, Aleil B et al (2006) Platelet-derived serotonin mediates liver regeneration. Science 312(5770):104–107

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Chalazonitis A, Huang YY et al (2011a) Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci 31(24):8998–9009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Ghia JE, Wang H et al (2011b) Serotonin activates dendritic cell function in the context of gut inflammation. Am J Pathol 178(2):662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linden DR, Chen JX, Gershon MD, Sharkey KA, Mawe GM (2003) Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 285(1):G207–G216

    Article  CAS  PubMed  Google Scholar 

  • Linden DR, Foley KF, McQuoid C, Simpson J, Sharkey KA, Mawe GM (2005) Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis. Neurogastroenterol Motil 17(4):565–574

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Geddis MS, Wen Y, Setlik W, Gershon MD (2005) Expression and function of 5-HT4 receptors in the mouse enteric nervous system. Am J Physiol Gastrointest Liver Physiol 289(6):G1148–G1163

    Article  CAS  PubMed  Google Scholar 

  • Liu MT, Kuan YH, Wang J, Hen R, Gershon MD (2009) 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 29(31):9683–9699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magro F, Vieira-Coelho MA, Fraga S et al (2002) Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig Dis Sci 47(1):216–224

    Article  CAS  PubMed  Google Scholar 

  • Manabe N, Wong BS, Camilleri M (2010) New-generation 5-HT4 receptor agonists: potential for treatment of gastrointestinal motility disorders. Expert Opin Investig Drugs 19(6):765–775

    Article  CAS  PubMed  Google Scholar 

  • Mangel AW, Northcutt AR (1999) Review article: the safety and efficacy of alosetron, a 5-HT3 receptor antagonist, in female irritable bowel syndrome patients. Aliment Pharmacol Ther 13(Suppl 2):77–82

    Article  PubMed  Google Scholar 

  • Manning BM, Meyer AF, Gruba SM, Haynes CL (2015) Single-cell analysis of mast cell degranulation induced by airway smooth muscle-secreted chemokines. Biochim Biophys Acta 1850(9):1862–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolis KG, Gershon MD (2009) Neuropeptides and inflammatory bowel disease. Curr Opin Gastroenterol 25(6):503–511

    Article  CAS  PubMed  Google Scholar 

  • Margolis KG, Stevanovic K, Karamooz N et al (2011) Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology 141(2):588–598 598 e581–e582

    Article  PubMed  PubMed Central  Google Scholar 

  • Margolis KG, Stevanovic K, Li Z et al (2014) Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut 63(6):928–937

    Article  CAS  PubMed  Google Scholar 

  • Margolis KG, Li Z, Stevanovic K et al (2016) Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. J Clin Invest 126(6):2221–2235

    Article  PubMed  PubMed Central  Google Scholar 

  • Matondo RB, Punt C, Homberg J et al (2009) Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration. Am J Physiol Gastrointest Liver Physiol 296(4):G963–G968

    Article  CAS  PubMed  Google Scholar 

  • Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut – functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10(8):473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mawe GM, Branchek TA, Gershon MD (1989) Blockade of 5-HT-mediated enteric slow EPSPs by BRL 24924: gastrokinetic effects. Am J Physiol 257(3 Pt 1):G386–G396

    CAS  PubMed  Google Scholar 

  • McCallum RW, Prakash C, Campoli-Richards DM, Goa KL (1988) Cisapride. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use as a prokinetic agent in gastrointestinal motility disorders. Drugs 36(6):652–681

    Article  CAS  PubMed  Google Scholar 

  • McElhanon BO, McCracken C, Karpen S, Sharp WG (2014) Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 133(5):872–883

    Article  PubMed  Google Scholar 

  • Morrissey JJ, Walker MN, Lovenberg W (1977) The absence of tryptophan hydroxylase activity in blood platelets. Proc Soc Exp Biol Med 154(4):496–499

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Ray M, Ray S (2015) Phagocytic efficiency and cytotoxic responses of Indian freshwater sponge (Eunapius carteri) cells isolated by density gradient centrifugation and flow cytometry: a morphofunctional analysis. Zoology (Jena) 118(1):8–18

    Article  Google Scholar 

  • Mulder EJ, Anderson GM, Kema IP et al (2004) Platelet serotonin levels in pervasive developmental disorders and mental retardation: diagnostic group differences, within-group distribution, and behavioral correlates. J Am Acad Child Adolesc Psychiatry 43(4):491–499

    Article  PubMed  Google Scholar 

  • Neal KB, Parry LJ, Bornstein JC (2009) Strain-specific genetics, anatomy and function of enteric neural serotonergic pathways in inbred mice. J Physiol 587(3):567–586

    Article  CAS  PubMed  Google Scholar 

  • Nijenhuis CM, Horst PG, Berg LT, Wilffert B (2012a) Disturbed development of the enteric nervous system after in utero exposure of selective serotonin re-uptake inhibitors and tricyclic antidepressants. Part 1: literature review. Br J Clin Pharmacol 73(1):16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijenhuis CM, ter Horst PG, van Rein N, Wilffert B, de Jong-van den Berg LT (2012b) Disturbed development of the enteric nervous system after in utero exposure of selective serotonin re-uptake inhibitors and tricyclic antidepressants. Part 2: testing the hypotheses. Br J Clin Pharmacol 73(1):126–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hara JR, Ho W, Linden DR, Mawe GM, Sharkey KA (2004) Enteroendocrine cells and 5-HT availability are altered in mucosa of guinea pigs with TNBS ileitis. Am J Physiol Gastrointest Liver Physiol 287(5):G998–1007

    Article  PubMed  CAS  Google Scholar 

  • O’Hara JR, Skinn AC, MacNaughton WK, Sherman PM, Sharkey KA (2006) Consequences of Citrobacter rodentium infection on enteroendocrine cells and the enteric nervous system in the mouse colon. Cell Microbiol 8(4):646–660

    Article  PubMed  CAS  Google Scholar 

  • O’Hara JR, Lomax AE, Mawe GM, Sharkey KA (2007) Ileitis alters neuronal and enteroendocrine signalling in guinea pig distal colon. Gut 56(2):186–194

    Article  PubMed  CAS  Google Scholar 

  • Page IH (1976) The discovery of serotonin. Perspect Biol Med 20(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53(1):159–227

    CAS  PubMed  Google Scholar 

  • Pan H, Galligan JJ (1994) 5-HT1A and 5-HT4 receptors mediate inhibition and facilitation of fast synaptic transmission in enteric neurons. Am J Physiol 266(2 Pt 1):G230–G238

    CAS  PubMed  Google Scholar 

  • Prasad HC, Zhu CB, McCauley JL et al (2005) Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci U S A 102(32):11545–11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad HC, Steiner JA, Sutcliffe JS, Blakely RD (2009) Enhanced activity of human serotonin transporter variants associated with autism. Philos Trans R Soc Lond B Biol Sci 364(1514):163–173

    Article  CAS  PubMed  Google Scholar 

  • Rabenda V, Nicolet D, Beaudart C, Bruyere O, Reginster JY (2013) Relationship between use of antidepressants and risk of fractures: a meta-analysis. Osteoporos Int 24(1):121–137

    Article  CAS  PubMed  Google Scholar 

  • Rahimi R, Nikfar S, Abdollahi M (2008) Efficacy and tolerability of alosetron for the treatment of irritable bowel syndrome in women and men: a meta-analysis of eight randomized, placebo-controlled, 12-week trials. Clin Ther 30(5):884–901

    Article  CAS  PubMed  Google Scholar 

  • Rapport MM (1949) Serum vasoconstrictor (serotonin) the presence of creatinine in the complex; a proposed structure of the vasoconstrictor principle. J Biol Chem 180(3):961–969

    CAS  PubMed  Google Scholar 

  • Rapport MM, Green AA, Page IH (1947) Purification of the substance which is responsible for the vasoconstrictor activity of serum. Fed Proc 6(1 Pt 2):184

    CAS  PubMed  Google Scholar 

  • Rapport MM, Green AA, Page IH (1948) Partial purification of the vasoconstrictor in beef serum. J Biol Chem 174(2):735–741

    CAS  PubMed  Google Scholar 

  • Ritvo ER, Yuwiler A, Geller E, Ornitz EM, Saeger K, Plotkin S (1970) Increased blood serotonin and platelets in early infantile autism. Arch Gen Psychiatry 23(6):566–572

    Article  CAS  PubMed  Google Scholar 

  • Sabate JM, Bouhassira D, Poupardin C, Wagner A, Loria Y, Coffin B (2008) Sensory signalling effects of tegaserod in patients with irritable bowel syndrome with constipation. Neurogastroenterol Motil 20(2):134–141

    CAS  PubMed  Google Scholar 

  • Sakowski SA, Geddes TJ, Thomas DM, Levi E, Hatfield JS, Kuhn DM (2006) Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Res 1085(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Sanchez de Medina F, Romero-Calvo I, Mascaraque C, Martinez-Augustin O (2014) Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis 20(12):2394–2404

    Article  PubMed  Google Scholar 

  • Shajib MS, Khan WI (2015) The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf) 213(3):561–574

    Article  CAS  Google Scholar 

  • Shi ZC, Devasagayaraj A, Gu K et al (2008) Modulation of peripheral serotonin levels by novel tryptophan hydroxylase inhibitors for the potential treatment of functional gastrointestinal disorders. J Med Chem 51(13):3684–3687

    Article  CAS  PubMed  Google Scholar 

  • Shin A, Camilleri M, Kolar G, Erwin P, West CP, Murad MH (2014) Systematic review with meta-analysis: highly selective 5-HT4 agonists (prucalopride, velusetrag or naronapride) in chronic constipation. Aliment Pharmacol Ther 39(3):239–253

    Article  CAS  PubMed  Google Scholar 

  • Smith TK, Park KJ, Hennig GW (2014) Colonic migrating motor complexes, high amplitude propagating contractions, neural reflexes and the importance of neuronal and mucosal serotonin. J Neurogastroenterol Motil 20(4):423–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiller R (2007) Serotonin, inflammation, and IBS: fitting the jigsaw together? J Pediatr Gastroenterol Nutr 45(Suppl 2):S115–S119

    Article  CAS  PubMed  Google Scholar 

  • Spiller RC, Jenkins D, Thornley JP et al (2000) Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47(6):804–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spohn SN, Scott R, O’Neill C, MacNaughton C, Dicay M, Bianco F, Bonora E, Lavoie B, Wilcox RL, De Giorgio R, MacNaughton W, Sharkey KA, Mawe GM (2010) Protective Actions of 5-HT4 Receptors in the Colonic Epithelium. FASEB J 30(1):Supplement 1023.1010

    Google Scholar 

  • Sutcliffe JS, Delahanty RJ, Prasad HC et al (2005) Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am J Hum Genet 77(2):265–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tack J, Camilleri M, Chang L et al (2012) Systematic review: cardiovascular safety profile of 5-HT(4) agonists developed for gastrointestinal disorders. Aliment Pharmacol Ther 35(7):745–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Owyang C (1997) Characterization of vagal pathways mediating gastric accommodation reflex in rats. J Physiol 504(Pt 2):479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaki M, Mawe GM, Barasch JM, Gershon MD, Gershon MD (1985) Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. Neuroscience 16(1):223–240

    Article  CAS  PubMed  Google Scholar 

  • Tharayil VS, Wouters MM, Stanich JE et al (2010) Lack of serotonin 5-HT2B receptor alters proliferation and network volume of interstitial cells of Cajal in vivo. Neurogastroenterol Motil 22(4):462–469 e109–e410

    Article  CAS  PubMed  Google Scholar 

  • Tonini M, Galligan JJ, North RA (1989) Effects of cisapride on cholinergic neurotransmission and propulsive motility in the guinea pig ileum. Gastroenterology 96(5 Pt 1):1257–1264

    Article  CAS  PubMed  Google Scholar 

  • Trendelenburg P (2006) Physiological and pharmacological investigations of small intestinal peristalsis. Translation of the article “Physiologische und pharmakologische Versuche uber die Dunndarmperistaltik”, Arch. Exp. Pathol. Pharmakol. 81, 55-129, 1917. Naunyn Schmiedebergs Arch Pharmacol 373(2):101–133

    Article  CAS  PubMed  Google Scholar 

  • Twarog BM (1954) Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J Cell Physiol 44(1):141–163

    Article  CAS  Google Scholar 

  • Tyers MB, Freeman AJ (1992) Mechanism of the anti-emetic activity of 5-HT3 receptor antagonists. Oncology 49(4):263–268

    Article  CAS  PubMed  Google Scholar 

  • Veenstra-Vanderweele J, Jessen TN, Thompson BJ et al (2009) Modeling rare gene variation to gain insight into the oldest biomarker in autism: construction of the serotonin transporter Gly56Ala knock-in mouse. J Neurodev Disord 1(2):158–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Veenstra-VanderWeele J, Muller CL, Iwamoto H et al (2012) Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci U S A 109(14):5469–5474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verheijden S, De Schepper S, Boeckxstaens GE (2015) Neuron-macrophage crosstalk in the intestine: a “microglia” perspective. Front Cell Neurosci 9:403

    Article  PubMed  PubMed Central  Google Scholar 

  • Wade PR, Tamir H, Kirchgessner AL, Gershon MD (1994) Analysis of the role of 5-HT in the enteric nervous system using anti-idiotopic antibodies to 5-HT receptors. Am J Physiol 266(3 Pt 1):G403–G416

    CAS  PubMed  Google Scholar 

  • Wade PR, Chen J, Jaffe B, Kassem IS, Blakely RD, Gershon MD (1996) Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci 16(7):2352–2364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66(9):1673–1680

    Article  CAS  PubMed  Google Scholar 

  • Walther DJ, Peter JU, Bashammakh S et al (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299(5603):76

    Article  CAS  PubMed  Google Scholar 

  • Warden SJ, Robling AG, Sanders MS, Bliziotes MM, Turner CH (2005) Inhibition of the serotonin (5-hydroxytryptamine) transporter reduces bone accrual during growth. Endocrinology 146(2):685–693

    Article  CAS  PubMed  Google Scholar 

  • Westbroek I, van der Plas A, de Rooij KE, Klein-Nulend J, Nijweide PJ (2001) Expression of serotonin receptors in bone. J Biol Chem 276(31):28961–28968

    Article  CAS  PubMed  Google Scholar 

  • Wheatcroft J, Wakelin D, Smith A, Mahoney CR, Mawe G, Spiller R (2005) Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. Neurogastroenterol Motil 17(6):863–870

    Article  CAS  PubMed  Google Scholar 

  • Worthington JJ (2015) The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans 43(4):727–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav VK, Ryu JH, Suda N et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135(5):825–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav VK, Oury F, Suda N et al (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138(5):976–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav VK, Balaji S, Suresh PS et al (2010) Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med 16(3):308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305(5681):217

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara Gross Margolis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Terry, N., Margolis, K.G. (2016). Serotonergic Mechanisms Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. In: Greenwood-Van Meerveld, B. (eds) Gastrointestinal Pharmacology . Handbook of Experimental Pharmacology, vol 239. Springer, Cham. https://doi.org/10.1007/164_2016_103

Download citation

Publish with us

Policies and ethics