Skip to main content

Ancient Seep Carbonates: From Outcrop Appearance to Microscopic Petrography

  • Chapter
  • First Online:
Ancient Hydrocarbon Seeps

Part of the book series: Topics in Geobiology ((TGBI,volume 53))

Abstract

Precipitation of cements forming methane-derived carbonates is inherent to marine hydrocarbon seep environments. Carbonate deposits enriched in methanogenic carbon are found in ancient rock formations as old as the Silurian. In contrast to their recent equivalents, they are mostly found on land in uplifted ancient sedimentary formations. Unlike their extant equivalents, ancient seeps are no longer active and have been frequently subjected to burial which has not yet affected recent seeps. Furthermore, aragonite forming bulk of extant seep carbonates is largely recrystallized into calcite in their ancient equivalents. Some exposures of fossil rock formations offer a three-dimensional view of plumbing system supplying ancient seeps, but this is largely hidden below the seabed where extant seeps are located.

Despite distinct approaches required by occurrence and history of ancient and extant seep deposits, the petrographic features characterizing them are similar. Both are composed of microcrystalline carbonates with a variable amount of dispersed pyrite. Sparry cements, especially botryoidal aragonite and calcite, are the hallmark of seep deposits and are one of the first features noticed by any researcher. These features of seep carbonate remained virtually unchanged throughout 420 Ma of their known history and allow for easy recognition of such carbonates in the fossil record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ager DV (1965) The adaptations of Mesozoic brachiopods to different environments. Palaeogeog Palaeoclimat Palaeoecol 1:143–172

    Article  Google Scholar 

  • Agirrezabala LM (2009) Mid-Cretaceous hydrothermal vents and authigenic carbonates in a transform margin, Basque-Cantabrian Basin (western Pyrenees): a multidisciplinary study. Sedimentology 56:969–996

    Article  Google Scholar 

  • Agirrezabala LM, Kiel S, Blumenberg M et al (2013) Outcrop analogues of pockmarks and associated methane-seep carbonates: a case study from the Lower Cretaceous (Albian) of the Basque-Cantabrian Basin, western Pyrenees. Palaeogeog Palaeoclimat Palaeoecol 390:94–115

    Article  Google Scholar 

  • Aissaoui DM (1985) Botryoidal aragonite and its diagenesis. Sedimentology 32:345–361

    Article  Google Scholar 

  • Aissaoui DM (1988) Magnesian calcite cements and their diagenesis: dissolution and dolomitization, Mururoa Atoll. Sedimentology 35:821–841

    Article  Google Scholar 

  • Allison PA, Hasselbo SP, Brett CE (2008) Methane seeps on Early Jurassic dysoxic seafloor. Palaeogeog Palaeoclimat Palaeoecol 270:230–238

    Google Scholar 

  • Aloisi G, Pierre C, Rouchy J-M et al (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization. Earth Planet Sci Lett 184:321–338

    Article  Google Scholar 

  • Amano K, Jenkins RG, Sako Y et al (2013) A Paleogene deep-sea methane-seep community from Honshu, Japan. Palaeogeog Palaeoclimat Palaeoecol 387:126–133

    Article  Google Scholar 

  • Baker PA, Kastner M (1981) Constraints on the formation of sedimentary dolomite. Science 213:214–216

    Article  Google Scholar 

  • Barbieri R, Cavalazzi B (2005) Microbial fabrics from Neogene cold-seep carbonates, northern Apennine, Italy. Palaeogeog Palaeoclimat Palaeoecol 227:143–155

    Article  Google Scholar 

  • Barbieri R, Ori GG, Cavalazzi B (2005) A Silurian cold-seep ecosystem from the Middle Atlas, Morocco. Palaios 19:527–542

    Article  Google Scholar 

  • Bathurst RCG (1975) Carbonate sediments and their diagenesis. Elsevier, Amsterdam

    Google Scholar 

  • Berti M, Cuzzani MG, Landuzzi A et al (1994) Hydrocarbon-derived imprints in olistostromes of the Early Sarrevallian Marnoso-arenacea Formation, Romagna Appenines (northern Italy). Geo-Mar Lett 14:192–200

    Article  Google Scholar 

  • Blouet J-P, Imbert P, Fourbet A (2017) Mechanisms of biogenic gas formation revealed by seep carbonate paragenesis, Panoche Hills, California. Am Assoc Pet Geol Bull 101:1309–1340

    Google Scholar 

  • Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 205:291–310

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  Google Scholar 

  • Bohrmann G, Greinert J, Suess E et al (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26:647–650

    Google Scholar 

  • Bojanowski MJ (2007) Oligocene cold-seep carbonates from the Carpathians and their inferred relation to gas hydrates. Facies 53:347–360

    Article  Google Scholar 

  • Buggisch W, Krumm S (2005) Palaeozoic cold seep carbonates from Europe and North Africa—an integrated isotopic and geochemical approach. Facies 51:566–583

    Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent palaeoenvironments and paleontology: past developments and future research directions. Palaeogeog Palaeoclimat Palaeoecol 232:362–407

    Article  Google Scholar 

  • Campbell KA, Bottjer D (1993) Fossil cold seeps. Natl Geogr Res Explor 9:326–343

    Google Scholar 

  • Campbell KA, Bottjer D (1995) Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments. Geology 23:321–324

    Article  Google Scholar 

  • Campbell KA, Farmer JD, Des Marais D (2002) Ancient hydrocarbon seeps from Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeonenvironments. Geofluids 2:63–94

    Article  Google Scholar 

  • Campbell KA, Francis DA, Collins M et al (2008) Hydrocarbon seep carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand. Sediment Geol 204:83–105

    Article  Google Scholar 

  • Carson B, Screaton EJ (1998) Fluid flow in accretionary prism: evidence for focused, time-variable discharge. Rev Geophys 36:329–351

    Article  Google Scholar 

  • Cochran JK, Landman NH, Jakubowicz M et al (this volume) Geochemistry of Cold Hydrocarbon Seeps: An Overview. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps, Topics in geobiology, vol 50. Springer, Cham

    Google Scholar 

  • Conti S, Fontana D (2007) Anatomy of seep carbonates: ancient examples from the Miocene of northern Apennines (Italy). Palaeogeog Palaeoclimat Palaeoecol 227:156–175

    Article  Google Scholar 

  • Conti S, Artoni A, Piola G (2007) Seep-carbonates in a thrust-related anticline at the leading edge of an orogenic wedge: the case of the middle–late Miocene Salsomaggiore Ridge (northern Apennines, Italy). Sediment Geol 199:233–251

    Article  Google Scholar 

  • Danner WR (1966) Limestone resources of western Washington. State Wash Div Mines Geol Bull 52:1–474

    Google Scholar 

  • De Beaver E, Birgel D, Muchez P et al (2011) Fabric and formation of grapestone concretions within an unusual ancient methane seep system. Terra Nova 23:56–61

    Article  Google Scholar 

  • Diaz M, Eberli GP (2022) Microbial contribution to early marine cementation. Sedimentology 9:798 –822

    Google Scholar 

  • Dupraz C, Reid PR, Braissant O et al (2009) Process of carbonate cementation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  Google Scholar 

  • Duranti D, Mazzini A (2005) Large-scale hydrocarbon-driven sand injection in the Paleogene of the North Sea. Earth Planet Sci Lett 239:327–335

    Article  Google Scholar 

  • Feng D, Chen D, Roberts HH (2008) Sedimentary fabrics in the authigenic carbonates from Bush Hill: implications for the seabed fluid flow and its dynamic signature. Geofluids 8:301–310

    Article  Google Scholar 

  • Feng D, Chen D, Peckmann J et al (2010) Authigenic carbonates from methane seeps of the northern Congo fan: microbial formation mechanism. Mar Pet Geol 27:748–756

    Article  Google Scholar 

  • Flajs G, Vigener M, Keupp H et al (1995) Mud mounds: a polygenetic spectrum of fine-grained carbonate buildups. Facies 32:1–70

    Article  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin

    Book  Google Scholar 

  • Gaillard C, Rio M, Rolin Y et al (1992) Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios 7:451–465

    Article  Google Scholar 

  • Gill FL, Harding IC, Little CTS et al (2005) Palaeogene and Neogene cold-seep communities in Barbados, Trinidad and Venezuela: an overview. Palaeogeog Palaeoclimat Palaeoecol 227:191–209

    Article  Google Scholar 

  • Goedert JL, Benham SR (2003) Biogeochemical processes at ancient methane seeps: the Bear River site in southwestern Washington. In: Swanson TW (ed) Western Cordillera and adjacent areas, vol 4. Geological Society of America Field Guide, Boulder, pp 201–208

    Google Scholar 

  • Goedert JL, Peckmann J, Reitner J (2000) Worm tubes in an allochtonous cold-seep carbonate from lower Oligocene rocks in western Washington. J Paleontol 74:992–999

    Article  Google Scholar 

  • Gómez-Pérez I (2003) An early Jurassic deep-water stromatolitic bioherm related to possible methane seepage (Los Molles Formation, Neuquén, Argentina). Palaeogeog Palaeoclimat Palaeoecol 201:21–49

    Article  Google Scholar 

  • Grammer GM, Ginsburg RN, Swart PK et al (1993) Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. J Sediment Petrol 63:983–989

    Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies. In: Paull CK, Dillon PW (eds) Natural gas hydrates: occurrence, distribution, and detection, Geophysical Monograph, vol 124, pp 99–113

    Google Scholar 

  • Greinert J, Bohrmann G, Elvert M (2002) Stromatolitic fabric of authigenic carbonate crust: results of anaerobic methane oxidation at cold seeps in 4,850 m water depth. Int J Earth Sci 91:698–711

    Article  Google Scholar 

  • Haas A, Little CTS, Sahling H et al (2009) Mineralization of vestimentiferan tubes at methane seeps on the Congo deep-sea fan. Deep-Sea Res I 56:283–293

    Google Scholar 

  • Haas A, Peckmann J, Elvert M et al (2010) Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan. Mar Geol 268:129–136

    Article  Google Scholar 

  • Hagemann A, Leefmann T, Peckmann J et al (2013) Biomarkers from individual carbonate phases of an Oligocene cold-seep deposit, Washington State, USA. Lethaia 46:7–18

    Google Scholar 

  • Hammer Ø, Nakrem HA, Little CTS et al (2011) Hydrocarbon seeps from close to the Jurassic–Cretaceous boundary. Palaeogeog Palaeoclimat Palaeoecol 306:15–26

    Article  Google Scholar 

  • Hickman CS (2015) Paleogene marine bivalves of the deep-water Keasey Formation in Oregon, part III: the heteroconchs. PaleoBios 32:1–44

    Article  Google Scholar 

  • Hikida Y, Suzuki S, Togo Y et al (2003) An exceptionally well-preserved fossil seep community from the Cretaceous Yezo Group in the Nakagawa area, Hokkaido, northern Japan. Paleontol Res 7:329–342

    Article  Google Scholar 

  • Himmler T, Brinkmann T, Bohrmann G et al (2011) Corrosion patterns of seep carbonates from the eastern Mediterranean Sea. Terra Nova 23:206–212

    Article  Google Scholar 

  • Himmler T, Birgel D, Bayon G et al (2015) Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chem Geol 415:102–117

    Article  Google Scholar 

  • Himmler T, Bayon G, Wangner D et al (2016) Seep-carbonate lamination controlled by cyclic particle flux. Sci Rep 6:37439

    Article  Google Scholar 

  • Himmler T, Smrzka D, Zwicker J et al (2018) Stromatolites below the photic zone in the northern Arabian Sea formed by calcifying microbial mats. Geology 46:339–342

    Article  Google Scholar 

  • Hovland M (2002) On the self-sealing nature of marine seeps. Cont Shelf Res 22:2387–2394

    Article  Google Scholar 

  • Hovland M, Judd A (2007) Seabed fluid flow: the impact on biology, geology and the marine environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Hovland M, Svensen H (2006) Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea. Mar Geol 228:15–23

    Article  Google Scholar 

  • Hryniewicz K, Hammer Ø, Nakrem HA et al (2012) Microfacies of the Volgian–Ryazanian (Jurassic–Cretaceous) hydrocarbon seep carbonates from Sassenfjorden, central Spitsbergen, Svalbard. Norw J Geol 92:113–131

    Google Scholar 

  • Hryniewicz K, Little CTS, Nakrem HA (2014) Bivalves from the latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from central Spitsbergen, Svalbard. Zootaxa 3859:1–66

    Article  Google Scholar 

  • Hryniewicz K, Hagström J, Hammer Ø et al (2015a) Late Jurassic–Early Cretaceous hydrocarbon seep boulders from Novaya Zemlya and their faunas. Palaeogeog Palaeoclimat Palaeoecol 436:231–244

    Article  Google Scholar 

  • Hryniewicz K, Nakrem HA, Hammer Ø et al (2015b) Palaeoecology of latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from Spitsbergen, Svalbard. Lethaia 48:353–374

    Article  Google Scholar 

  • Hryniewicz K, Bitner MA, Durska E et al (2016) Paleocene methane seep and wood-fall marine environments from Spitsbergen, Svalbard. Palaeogeog Palaeoclimat Palaeoecol 462:41–56

    Article  Google Scholar 

  • Hryniewicz K, Jakubowicz M, Belka Z et al (2017) New bivalves from the Middle Devonian methane seep in Morocco: the oldest record of repetitive shell morphologies among some seep bivalve molluscs. J Syst Palaeontol 15:19–41

    Article  Google Scholar 

  • Hryniewicz K, Amano K, Bitner MA et al (2019) A late Paleocene fauna from shallow-water chemosynthesis-based ecosystems, Spitsbergen, Svalbard. Acta Palaeontol Pol 64:101–141

    Article  Google Scholar 

  • Hryniewicz K, Miyajima Y, Amano K et al (2021) Formation, diagenesis and fauna from the Miocene Taishu Group of Tsushima (Japan). Geol Mag 158:964–984

    Article  Google Scholar 

  • Hybertsen F, Kiel S (2018) A middle Eocene seep deposit with silicified fauna from the Humptulips Formation in western Washington State, USA. Acta Palaeontol Pol 63:751–758

    Article  Google Scholar 

  • Jakubowicz M, Hryniewicz K, Belka Z (2017) Mass occurrence of seep-specific bivalves in the oldest-known cold seep metazoan community. Sci Rep 7:14292

    Article  Google Scholar 

  • Jakubowicz M, Agirrezabala L, Dopieralska J et al (2021) The role of magmatism in hydrocarbon generation in sedimented rifts: a Nd isotope perspective from mid-Cretaceous methane-seep deposits of the Basque-Cantabrian Basin, Spain. Geochim Cosmochim Acta 303:223–248

    Article  Google Scholar 

  • Jenkins RG, Kaim A, Hikida Y (2007) Methane-flux-dependent lateral faunal changes in the Late Cretaceous chemosymbiotic assemblage from the Nakagawa area of Hokkaido, Japan. Geobiology 5:127–139

    Article  Google Scholar 

  • Jenkins RG, Kaim A, Little CTS et al (2013) Worldwide distribution of the modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrocarbon seeps. Acta Palaeontol Pol 58:357–382

    Google Scholar 

  • Jørgensen NO (1989) Holocene methane-derived, dolomite-cemented sandstone pillars from the Kattegat, Denmark. Mar Geol 88:71–81

    Article  Google Scholar 

  • Joye SB (2020) The geology and biogeochemistry of hydrocarbon seeps. Ann Rev Earth Planet Sci 48:205–231

    Article  Google Scholar 

  • Kaim A, Jenkins RG, Warén A (2008) Provannid and provannid-like gastropods from Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of Provannidae. Zool J Linn Soc 154:421–436

    Article  Google Scholar 

  • Kaim A, Jenkins RG, Hikida Y (2009) Gastropods from Late Cretaceous Omagari and Yasukawa hydrocarbon seep deposits in the Nakagawa area, Hokkaido, Japan. Acta Palaeontol Pol 54:463–490

    Article  Google Scholar 

  • Kaim A, Skupien P, Jenkins RG (2013) A new Lower Cretaceous hydrocarbon seep locality from the Czech Carpathians and its fauna. Palaeogeog Palaeoclimat Palaeoecol 390:42–51

    Article  Google Scholar 

  • Kauffman EG, Arthur MA, Howe B et al (1996) Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior Seaway, U.S.A. Geology 24:799–802

    Article  Google Scholar 

  • Kelly SRA, Ditchfield PW, Doubleday PA et al (1995) An Upper Jurassic methane-seep limestone from the Fossil Bluff Group Forearc Basin of Alexander Island, Antarctica. J Sediment Res A 65:274–282

    Google Scholar 

  • Kelly SRA, Blanc E, Price SP et al (2000) Early Cretaceous giant bivalves from seep-relate limestone mounds, Wollaston Forland, northeast Greenland. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia. Geological Society of London, London, pp 227–246

    Google Scholar 

  • Kiel S (2010) An Eldorado for palaeontologists: the Cenozoic seeps of western Washington State, USA. In: Kiel S (ed) The vent and seep biota. Springer, Heidelberg, pp 433–448

    Chapter  Google Scholar 

  • Kiel S, Peckmann J (2007) Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage and four unusual Cenozoic fossil localities. Lethaia 40:345–357

    Article  Google Scholar 

  • Kiel S, Peckmann J (2008) Paleoecology and evolutionary significance of an Early Cretaceous Peregrinella-dominated hydrocarbon-seep deposit on the Crimean Peninsula. Palaios 23:751–759

    Article  Google Scholar 

  • Kiel S, Birgel D, Campbell KA et al (2013) Cretaceous methane-seep deposits from New Zealand and their fauna. Palaeogeog Palaeoclimat Palaeoecol 390:17–34

    Article  Google Scholar 

  • Kiel S, Glodny J, Birgel D et al (2014a) The paleoecology, habitats, and stratigraphic range of the enigmatic Cretaceous brachiopod Peregrinella. PLoS One 9(10):e109260

    Google Scholar 

  • Kiel S, Hansen C, Nitzsche KN et al (2014b) Using 87Sr/86Sr to date fossil methane seep deposits: methodological requirements and an example for the Great Valley Group, California. J Geol 122:353–366

    Article  Google Scholar 

  • Kuechler RR, Birgel D, Kiel S et al (2012) Miocene methane-derived authigenic carbonates from southwestern Washington, USA and a model for silification at seeps. Lethaia 45:259–273

    Article  Google Scholar 

  • Landman NH, Cochran JK, Larson NL et al (2012) Methane seeps as ammonite habitats in the U.S. Western Interior Seaway revealed by isotopic analyses of well-preserved shell material. Geology 40:507–510

    Article  Google Scholar 

  • Landman NH, Cochran KJ, Brezina J et al (this volume) Methane seeps in the Late Cretaceous Western Interior Seaway. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps, Topics in geobiology, vol 50. Springer, Cham

    Google Scholar 

  • Leefmann T, Bauermeister J, Kronz A et al (2008) Miniaturized biosignature analysis reveals implications for the formation of cold seep carbonates at Hydrate Ridge (off Oregon, USA). Biogeosciences 5:731–738

    Article  Google Scholar 

  • Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr Mar Biol Annu Rev 43:1–46

    Google Scholar 

  • Little CTS, Birgel D, Boyce AJ et al (2015) Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica. Palaeogeog Palaeoclimat Palaeoecol 418:213–228

    Article  Google Scholar 

  • Lu Y, Xiaming S, Xu H et al (2018) Formation of dolomite catalyzed by sulfate-driven anaerobic oxidation of methane: mineralogical and geochemical evidence from the northern South China Sea. Am Mineral 103:720–734

    Article  Google Scholar 

  • Łuczyński P (2001) Pressure-solution and chemical compaction of condensed Middle Jurassic deposits, High-Tatric Series, Tatra Mountains. Geol Carpathica 52:91–102

    Google Scholar 

  • Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balance. Geochim Cosmochim Acta 67:3403–3421

    Article  Google Scholar 

  • Luff R, Wallmann K, Aloisi G (2004) Numerical modelling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sci Lett 221:337–357

    Article  Google Scholar 

  • Luff R, Greinert J, Wallmann K et al (2005) Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites. Chem Geol 216:157–174

    Article  Google Scholar 

  • Magalhães V, Pinheiro LM, Ivanov MK et al (2012) Formation process of methane-derived authigenic carbonates from the Gulf of Cadiz. Sediment Geol 243(244):155–168

    Article  Google Scholar 

  • Matsumoto R (1990) Vuggy carbonate crust formed by hydrocarbon seepage on the continental shelf of Baffin Island, northeast Canada. Geochem J 24:143–158

    Article  Google Scholar 

  • Mazzini A, Ivanov MK, Parnell J et al (2004) Methane-related authigenic carbonates from the Black Sea: geochemical characterization and relation to seeping fluids. Mar Geol 212:153–181

    Article  Google Scholar 

  • Mazzini A, Aloisi G, Akhmanov GG et al (2005) Integrated petrographic and geochemical record of hydrocarbon seepage on Vøring Plateau. J Geol Soc London 162:815–827

    Article  Google Scholar 

  • Mazzini A, Svensen H, Hovland M et al (2006) Comparisons and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea. Mar Geol 231:89–102

    Article  Google Scholar 

  • Meehan KC, Landman NH (2016) Faunal associations in cold-methane seep deposit from the Upper Cretaceous Pierre Shale, South Dakota. Palaios 31:291–301

    Article  Google Scholar 

  • Miyajima Y, Jenkins JG (this volume) Biomarkers in Ancient Hydrocarbon-Seep Carbonates. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps, Topics in geobiology, vol 50. Springer, Cham

    Google Scholar 

  • Miyajima Y, Watanabe Y, Yanagisawa Y et al (2016) A late Miocene methane seep deposit bearing methane-trapping silica minerals at Joetsu, central Japan. Palaeogeog Palaeoclimat Palaeoecol 455:1–15

    Article  Google Scholar 

  • Monty CLV, Bosence DWJ, Bridges PH et al (1995) Carbonate mud-mounds: their origin and evolution. Int Assoc Sedimentologists Spec Publ 23:11–48

    Google Scholar 

  • Natalicchio M, Peckmann J, Birgel D et al (2015) Seep deposits from northern Istria, Croatia: a first glimpse into the Eocene seep fauna of the Tethys region. Geol Mag 152:444–459

    Article  Google Scholar 

  • Nesbitt EA, Martin RA, Campbell KA (2013) New records of Oligocene diffuse hydrocarbon seeps, northern Cascadia margin. Palaeogeog Palaeoclimat Palaeoecol 390:116–129

    Article  Google Scholar 

  • Nobuhara T (2016) Mass occurrence of the enigmatic gastropod Elmira in the Late Cretaceous Sada Limestone seep deposit in southwestern Shikoku, Japan. PalZ 90:701–722

    Google Scholar 

  • O’Reilly SS, Hryniewicz K, Little CTS et al (2014) Shallow water methane-derived authigenic carbonate at the Codling Fault Zone, western Irish Sea. Mar Geol 357:139–150

    Article  Google Scholar 

  • Pape T, Geprägs P, Hammerschmidt S et al (2014) Hydrocarbon seepage and its sources at mud volcanoes of the Kumano Forearc Basin, Nankai Trough subduction zone. Geochem Geophys Geosyst 15:2180–2194

    Article  Google Scholar 

  • Pearson MJ, Grosjean E, Nelson CS et al (2010) Tubular concretions in New Zealand petroliferous basins: lipid biomarker evidence for mineralization around proposed Miocene hydrocarbon seep conduits. J Pet Geol 33:205–220

    Article  Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling and ancient methane seeps. Chem Geol 205:443–467

    Article  Google Scholar 

  • Peckmann J, Little CTS, Gill F et al (2005) Worm tube fossils from the Hollard Mound hydrocarbon-seep deposit, Middle Devonian, Morocco: Palaeozoic seep-related vestimentiferans? Palaeogeogr Palaeoclimatol Palaeoecol 227:242–257

    Google Scholar 

  • Peckmann J, Thiel V, Michaelis W et al (1999a) Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene, northern Italy): microbially induced authigenic carbonates. Int J Earth Sci 88:60–75

    Article  Google Scholar 

  • Peckmann J, Walliser O, Riegel W et al (1999b) Signatures of hydrocarbon venting in the Middle Devonian carbonate mound (Hollard Mound) at the Hamar Laghdad (Morocco). Facies 40:281–296

    Article  Google Scholar 

  • Peckmann J, Reimer A, Luth U et al (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–150

    Article  Google Scholar 

  • Peckmann J, Goedert JL, Thiel V et al (2002) A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49:855–873

    Article  Google Scholar 

  • Peckmann J, Goedert JL, Heinrichs T et al (2003) A late Eocene ‘Whiskey Creek’ methane seep deposit (western Washington State): part II, petrology, stable isotopes, and biogeochemistry. Facies 48:241–254

    Article  Google Scholar 

  • Peckmann J, Campbell KA, Walliser OH et al (2007) A Late Devonian hydrocarbon-seep deposit dominated by dimerelloid brachiopods, Morocco. Palaios 22:114–122

    Article  Google Scholar 

  • Peckmann J, Kiel S, Sandy MR et al (2011) Mass occurrence of the brachiopod Halorella in Late Triassic methane-seep deposits, eastern Oregon. J Geol 119:207–220

    Article  Google Scholar 

  • Perez-Garcia C, Feseker T, Mienert J et al (2009) The Håkon Mosby mud volcano: 330000 years of focused fluid flow activity at the SW Barents Sea slope. Mar Geol 262:105–115

    Article  Google Scholar 

  • Pierre C, Fouquet Y (2007) Authigenic carbonates from methane seeps of the Congo deep-sea fan. Geo-Mar Lett 27:249–257

    Article  Google Scholar 

  • Raup DM (1979) Biases in the fossil record of species and genera. Bull Carnegie Mus Nat His 13:85–91

    Google Scholar 

  • Reitner J, Peckmann J, Blumenberg M et al (2005a) Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeog Palaeoclimat Palaeoecol 227:18–30

    Article  Google Scholar 

  • Reitner J, Peckmann J, Reimer A et al (2005b) Methane-derived carbonate buildups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51:66–79

    Article  Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    Article  Google Scholar 

  • Riding RE, Awramik SM (2000) Microbial sediments. Springer, Heidelberg

    Book  Google Scholar 

  • Römer M, Sahling H, Pape T et al (2012) Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J Geophys Res 117:C10015

    Google Scholar 

  • Ross DJ (1991) Botryoidal high-magnesium calcite marine cements from the Upper Cretaceous of the Mediterranean Region. J Sediment Petrol 61:349–353

    Google Scholar 

  • Sahling H, Rickert D, Lee RW et al (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138

    Article  Google Scholar 

  • Sandy MR (2010) Brachiopods from ancient hydrocarbon seeps and hydrothermal vents. In: Kiel S (ed) The vent and seep biota. Springer, Heidelberg, pp 279–314

    Chapter  Google Scholar 

  • Savard MM, Beauchamp B, Veizer J (1996) Significance of aragonite cements around Cretaceous marine methane seeps. J Sediment Res 66:430–438

    Google Scholar 

  • Shapiro RS (2000) A comment on the systematic confusion of thrombolites. Palaios 15:166–169

    Article  Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res Part II 45:517–567

    Article  Google Scholar 

  • Smrzka D, Kraemer SM, Zwicker J et al (2015) Constraining silica diagenesis in methane-seep deposits. Palaeogeog Palaeoclimat Palaeoecol 420:13–26

    Article  Google Scholar 

  • Smrzka D, Zwicker J, Kolonic S et al (2017) Methane seepage in a Cretaceous greenhouse world recorded by an unusual carbonate deposit from the Tarfaya Basin, Morocco. Depositional Rec 3:4–37

    Article  Google Scholar 

  • Smrzka D, Zwicker J, Misch D et al (2019) Oil seepage and carbonate formation: a case study from the southern Gulf of Mexico. Sedimentology 66:2318–2353

    Article  Google Scholar 

  • Smrzka D, Zwicker J, Lu Y et al (2021) Trace element distribution in methane-seep carbonates: the role of mineralogy and dissolved sulfide. Chem Geol 580:120357

    Article  Google Scholar 

  • Stakes DS, Orange D, Paduan JB et al (1999) Cold seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol 159:93–109

    Article  Google Scholar 

  • Takeuchi R, Matsumoto R, Ogihara S et al (2007) Methane-induced dolomite ‘chimneys’ on the Kuroshima Knoll, Ryukyu Islands, Japan. J Geochem Explor 95:16–28

    Article  Google Scholar 

  • Teichert B, Eisenhauer A, Bohrmann G et al (2003) U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: records of fluid flow variations. Geochim Cosmochim Acta 67:3845–3857

    Article  Google Scholar 

  • Teichert B, Bohrmann G, Suess E (2005) Chemocherms on Hydrate Ridge—unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeog Palaeoclimat Palaeoecol 227:67–85

    Article  Google Scholar 

  • Tong H, Feng D, Peckman J et al (2019) Environments favoring dolomite formation at cold seeps: a case study from the Gulf of Mexico. Chem Geol 518:9–18

    Article  Google Scholar 

  • Tsunogai U, Kosaka A, Nakayama N et al (2010) Origin and fate of deep-sea seeping methane bubbles at Kuroshima Knoll, Ryukyu forearc region, Japan. Geochem J 44:461–476

    Article  Google Scholar 

  • Van Dover CL, Aharon P, Bernhard JM et al (2002) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep-Sea Res I 50:281–300

    Article  Google Scholar 

  • Vanneste H, Kastner M, James RH et al (2012) Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: a record of palaeo-seepage of hydrocarbon-bearing fluids. Chem Geol 300(301):24–39

    Article  Google Scholar 

  • Vinn O, Kupriyanova E, Kiel S (2013) Serpulids (Annelida, Polychaeta) at Cretaceous to modern hydrocarbon seeps: ecological and evolutionary patters. Palaeogeog Palaeoclimat Palaeoecol 390:35–41

    Article  Google Scholar 

  • Vinn O, Hryniewicz K, Little CTS et al (2014) A boreal seprulid fauna from Volgian–Ryazanian (latest Jurassic–earliest Cretaceous) shelf sediments and hydrocarbon seeps from Svalbard. Geodiversitas 36:527–540

    Article  Google Scholar 

  • Webb KE, Barnes DKA, Planke S (2009) Pockmarks: refugees for marine benthic biodiversity. Limnol Oceanogr 54:1776–1788

    Article  Google Scholar 

  • Wiese F, Kiel S, Pack A et al (2015) The beast burrowed, the fluid followed—crustacean burrows as methane conduits. Mar Pet Geol 66:631–640

    Article  Google Scholar 

  • Zwicker J, Smrzka D, Gier S et al (2015) Mineralized conduits are part of the uppermost plumbing system of Oligocene methane-seep deposits, Washington State (USA). Mar Pet Geol 66:616–630

    Article  Google Scholar 

  • Zwicker J, Smrzka D, Himmler T et al (2018) Rare earth elements as tracers for microbial activity and early diagenesis: a new perspective for carbonate cements of ancient methane-seep deposits. Chem Geol 501:77–85

    Article  Google Scholar 

  • Zwicker J, Smrzka D, Steindl FR et al (2020) Mineral authigenesis within chemosynthetic microbial mats: coated grain formation and phosphogenesis at Cretaceous hydrocarbon seep, New Zealand. Depositional Rec 7:294–310

    Article  Google Scholar 

Download references

Acknowledgments

I am very thankful to editors Andrzej Kaim (Institute of Paleobiology PAS, Poland), J. Kirk Cochran (Stony Brook University, New York, USA), and Neil H. Landman (American Museum of Natural History, New York, USA) for an opportunity to contribute to this book. I would like also to thank Andrzej Kaim for donating whole rock specimens and photos from various seep deposits around the world, which I used during the preparation of this chapter. Many fruitful discussions in the office and in the field with Kazutaka Amano (Joetsu University of Education, Joetsu, Japan), Michał Jakubowicz (Adam Mickiewicz University, Poznań, Poland), Robert G. Jenkins (Kanazawa University, Kanazawa, Japan), Andrzej Kaim, Steffen Kiel (Swedish Museum of Natural History, Stockholm, Sweden), and Crispin T.S. Little (University of Leeds, Leeds, UK) are sincerely acknowledged. Special thanks goes to referees J. Kirk Cochran and Jennifer Zwicker (University of Vienna, Vienna, Austria) for their thorough reviews which helped substantially improve this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Hryniewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hryniewicz, K. (2022). Ancient Seep Carbonates: From Outcrop Appearance to Microscopic Petrography. In: Kaim, A., Cochran, J.K., Landman, N.H. (eds) Ancient Hydrocarbon Seeps. Topics in Geobiology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-031-05623-9_3

Download citation

Publish with us

Policies and ethics