Skip to main content

Exploring Futures in Landscape Agronomy: Methodological Issues and Prospects of Combining Scenarios and Spatially Explicit Models

  • Chapter
  • First Online:
Landscape Agronomy

Abstract

This chapter describes the combinations of spatially explicit models and scenarios to explore futures of agricultural landscapes. Modeling agricultural landscape changes remains highly challenging and strongly depends on the scale (resolution, extent) considered, leading to various types of models that have respecting advantages and drawbacks. Moreover, the type of scenario (e.g., trends, contrasting, alternative) to be simulated may influence the model design or choice, and vice versa. This chapter outlines main practices for (a) exploring agricultural futures in land change science and (b) LUCC modeling in landscape agronomy highlights, illustrating the converging interests of landscape agronomy and LUCC modeling, and the remaining challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aalders I (2008) Modeling land-use decision behavior with Bayesian belief networks. Ecol Soc 13(1):16

    Article  Google Scholar 

  • Alcamo J (2008) Environmental futures: the practice of environmental scenario analysis, Developments in integrated environmental assessment, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Alcamo J (2009) The SAS approach: combining qualitative and quantitative knowledge in environmental scenarios. In: Joseph A (ed) Environmental futures. The practice of environmental scenario analysis. Elsevier, Amsterdam, pp 123–150

    Google Scholar 

  • Amer M, Daim TU, Jetter A (2013) A review of scenario planning. Futures 46:23–40

    Article  Google Scholar 

  • Asselen S, Verburg PH (2013) Land cover change or land use intensification: simulating land system change with a global-scale land change model. Glob Chang Biol 19(12):3648–3667. https://doi.org/10.1111/gcb.12331

    Article  PubMed  Google Scholar 

  • Bachinger J, Zander P (2007) ROTOR: a tool for generating and evaluating crop rotations for organic farming systems. Eur J Agron 26(2):130–143. https://doi.org/10.1016/j.eja.2006.09.002

    Article  Google Scholar 

  • Bamière L, Havlíka P, Jacqueta F, Lhermb M, Milleta G, Bretagnolle V (2011) Farming system modelling for agri-environmental policy design: the case of a spatially non-aggregated allocation of conservation measures. Ecol Econ 70(5):891–899. https://doi.org/10.1016/j.ecolecon.2010.12.014

    Article  Google Scholar 

  • Barreteau O, Bousquet F, Attonaty J-M (2001) Role-playing games for opening the black box of multi-agent systems: method and lessons of its application to Senegal River Valley irrigated systems. J Artif Soc Soc Simul 4(2):5

    Google Scholar 

  • Benoit M, Rizzo D, Marraccini E, Moonen AC, Galli M, Lardon S, Rapey H, Thenail C, Bonari E (2012) Landscape agronomy: a new field for addressing agricultural landscape dynamics. Landsc Ecol 27(10):1385–1394. https://doi.org/10.1007/s10980-012-9802-8

    Article  Google Scholar 

  • Bishop P, Hines A, Collins T (2007) The current state of scenario development: an overview of techniques. Foresight 9:5–25

    Article  Google Scholar 

  • Brown DG, Verburg PH, Pontius RG Jr, Lange MD (2013) Opportunities to improve impact, integration, and evaluation of land change models. Curr Opin Environ Sustain 5:452–457. https://doi.org/10.1016/j.cosust.2013.07.012

    Article  Google Scholar 

  • Butler SJ, Vickery JA, Norris K (2007) Farmland biodiversity and the footprint of agriculture. Science 315:381–384. https://doi.org/10.1126/science.1136607

    Article  CAS  PubMed  Google Scholar 

  • Caillault S, Delmotte S, Kêdowidé C, Mialhe F, Vannier C, Amblard F, Bécu N, Gautreau P, Etienne M, Houet T (2013) Assessing the influence of social and economical networks on land use and land cover changes: a neutral model based approach. Environ Model Softw 45:64–73. https://doi.org/10.1016/j.envsoft.2012.11.003

    Article  Google Scholar 

  • Castella JC, Verburg PH (2007) Combination of process-oriented and pattern-oriented models of land use change in a mountain area of Vietnam. Ecol Model 202(3–4):410–420

    Article  Google Scholar 

  • Castella J-C, Trung TN, Boissau S (2005) Participatory simulation of land-use changes in the northern mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecol Soc 10(1):27

    Article  Google Scholar 

  • Castellazzi MS, Wood GA, Burgess PJ, Morris J, Conrad KF, Perry JN (2008) A systematic representation of crop rotations. Agric Syst 97(1–2):26–33

    Article  Google Scholar 

  • Castellazzi MS, Matthews J, Angevin F, Sausse C, Wood GA, Burgess PJ, Brown I, Conrad KF, Perry JN (2010) Simulation scenarios of spatio-temporal arrangement of crops at the landscape scale. Environ Model Softw 25:1881–1889. https://doi.org/10.1016/j.envsoft.2010.04.006

    Article  Google Scholar 

  • Costanza R, Voinov A (2004) Landscape simulation modelling. A spatially explicit, dynamic approach. Springer, New York

    Book  Google Scholar 

  • Daloğlu I, Nassauer JI, Riolo R, Scavia D (2014) An integrated social and ecological modeling framework—impacts of agricultural conservation practices on water quality. Ecol Soc 19(3):12. https://doi.org/10.5751/ES-06597-190312

    Article  Google Scholar 

  • Ding D, Bennett D, Secchi S (2015) Investigating impacts of alternative crop market scenarios on land use change with an agent-based model. Land 4:1110–1137. http://www.mdpi.com/2073-445X/4/4/1110

    Article  Google Scholar 

  • Dogliotti S, Rossing WAH, van Ittersum MK (2003) ROTAT: a tool for systematically generating crop rotations. Eur J Agron 19(2):239–250. https://doi.org/10.1016/S1161-0301(02)00047-3

    Article  Google Scholar 

  • Donatelli M, Van Ittersum MK, Bindi M, Porter JR (2002) Modelling cropping systems—highlights of the symposium and preface to the special issues. Eur J Agron 18(1–2):1–11. https://doi.org/10.1016/S1161-0301(02)00104-1

    Article  Google Scholar 

  • Eitelberg DA, Van Vliet J, Verburg PH (2017) Accounting for monogastric livestock as a driver in global land use and cover change assessments. J Land Use Sci 12:1–16

    Article  Google Scholar 

  • Engelen G, Lavalle C, Barredo JI, van der Meulen M, White R (2007) The MOLAND modelling framework for urban and regional land-use dynamics. Chapter 17. In: Koomen E et al (eds) Modelling land-use change; progress and applications. Springer, Dordrecht, pp 297–319

    Google Scholar 

  • Fuchs R, Verburg PH, Clevers JPGW, Herold M (2015) The potential of old maps and encyclopedias for reconstructing historic European land cover/use change. Appl Geogr 59:43–55. https://doi.org/10.1016/j.apgeog.2015.02.013

    Article  Google Scholar 

  • Gardner RH, Milne BT, Turner MG, O’Neill RV (1987) Neutral models for the analysis of broad-scale pattern. Landsc Ecol 1:19–28

    Article  Google Scholar 

  • Gaucherel C, Griffon S, Misson L, Houet T (2010) Combining process-based models for future biomass assessment at landscape scale. Landsc Ecol 25(2):201–215. https://doi.org/10.1007/s10980-009-9400-6

    Article  Google Scholar 

  • Gaudou B, Sibertin-Blanc C, Therond O, Amblard F, Auda Y, Arcangeli JP, Balestrat M, Charron-Moirez MH, Gondet E, Hong Y, Lardy R, Louail T, Mayor E, Panzoli D, Sauvage S, Sanchez-Perez JM, Taillandier P, Nguyen VB, Vavasseur M, Mazzega P (2014) The MAELIA multi-agent platform for integrated analysis of interactions between agricultural land-use and low-water management strategies. In: Alam SJ, van Dyke Parunak H (eds) Multi-agent-based simulation XIV, Lecture notes in artificial intelligence, vol 8235. Springer, New York. https://doi.org/10.1007/978-3-642-54783-6_6

    Chapter  Google Scholar 

  • Godet M (1986) Introduction to ‘la prospective’: seven key ideas and one scenario method. Futures 18:134–157

    Article  Google Scholar 

  • Gordon LJ, Peterson GD, Bennett EM (2008) Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol Evol 23:211–219. https://doi.org/10.1016/j.tree.2007.11.011

    Article  PubMed  Google Scholar 

  • Haslaeur (2015) Application of a spatially explicit backcasting model: a case study of sustainable development in Salzburg, Austria. Appl Geogr 58:128–140. https://doi.org/10.1016/j.apgeog.2015.01.018

    Article  Google Scholar 

  • Haslaeur E, Biberacher M, Blaschke T (2012) GIS-based backcasting: an innovative method for parameterisation of sustainable spatial planning and resource management. Futures 44:292–302. https://doi.org/10.1016/j.futures.2011.10.2012

    Article  Google Scholar 

  • Haslaeur E, Biberacher M, Blaschke T (2015) A spatially explicit backcasting approach for sustainable land-use planning. J Environ Plan Manag 59(5):866–890. https://doi.org/10.1080/09640568.2015.1044652

    Article  Google Scholar 

  • Holzworth DP, Snow V, Janssen S, Athanasiadis IN, Donatelli M, Hoogenboom G, White JW, Thorburn P (2015) Agricultural production systems modelling and software: current status and future prospects. Environ Model Softw 72:276–286. https://doi.org/10.1016/j.envsoft.2014.12.013

    Article  Google Scholar 

  • Houet T, Hubert-Moy L (2006) Modelling and projecting land-use and land-cover changes with a cellular automaton considering landscape trajectories: an improvement for simulation of plausible future states. EARSeL eProceedings 5:63–76

    Google Scholar 

  • Houet T, Loveland TR, Hubert-Moy L, Napton D, Gaucherel C, Barnes C (2010) Exploring subtle land use and land cover changes: a framework based on future landscape studies. Landsc Ecol 25(2):249–266. https://doi.org/10.1007/s10980-009-9362-8

    Article  Google Scholar 

  • Houet T, Schaller N, Castets M, Gaucherel C (2014) Improving the simulation of fine scale landscape changes coupling top-down and bottom-up land use and cover changes rules. Int J Geogr Sci 28(9):1848–1876

    Article  Google Scholar 

  • Houet T, Vacquié L, Sheeren D (2015) Evaluating the spatial uncertainty of future land abandonment in a mountainous valley (Vicdessos, Pyrenees - France): insights from model parameterization and experiments. J Mount Sci 12(5):1095–1112. https://doi.org/10.1007/s11629-014-3404-7

    Article  Google Scholar 

  • Houet T, Aguejdad R, Doukari O, Battaia G, Clarke K (2016) Description and validation of a ‘non path-dependent’ model for projecting contrasting urban growth futures. Cybergeo 759. http://cybergeo.revues.org/27397

  • Klein Goldewijk K, Beusen A, van Drecht G, de Vos M (2011) The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob Ecol Biogeogr 20:73–86

    Article  Google Scholar 

  • Kok K, Verburg P, Veldkamp T (2007a) Integrated assessment of the land system: the future of land use. Land Use Policy 24(3):517–520

    Article  Google Scholar 

  • Kok K, Biggs R, Zurek M (2007b) Methods for developing multiscale participatory scenarios: insights from southern Africa and Europe [online]. Ecol Soc 13(1):8. http://www.ecologyandsociety.org/vol12/iss1/art8/

    Article  Google Scholar 

  • Kok K, Bärlund I, Flörke M, Holman I, Gramberger M, Sendzimir J, Stuch B, Zellmer K (2015) European participatory scenario development: strengthening the link between stories and models. Clim Chang 128(3–4):187–200

    Article  Google Scholar 

  • Kolb M, Mas JF, Galicia L (2013) Evaluating drivers and transition potential models in a complex landscape in southern Mexico. Int J Geogr Inf Sci 27(9):1804–1827

    Article  Google Scholar 

  • Koomen E, Loonen W, Hilferink M (2008) Climate-change adaptations in land-use planning: a scenario-based approach. In: Bernard L, Friis-Christensen A, Pundt H (eds) The European Information Society; taking geoinformation science one step further. Springer, Berlin, pp 261–282

    Google Scholar 

  • Lamarque P, Artaux A, Barnaud C, Dobremez L, Nettier B, Lavorel S (2013) Taking into account farmers’ decision making to map fine-scale land management adaptation to climate and socioeconomic scenarios. Landsc Urban Plan 119:147–157

    Article  Google Scholar 

  • Lambin EF, Geist HJ (2003) Regional differences in tropical deforestation. Environment 45:22–36

    Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li XB, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skanes H, Steffen W, Stone GD, Svedin U, Veldkamp T, Vogel C, Xu JC (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11:261–269. https://doi.org/10.1016/S0959-3780(01)00007-3

    Article  Google Scholar 

  • Lavalle C et al (2011) A high resolution land use/cover modelling framework for Europe: introducing the EU-ClueScanner100 model. In: Murgante B et al (eds) Computational science and its applications—ICCSA 2011, Part I, Lecture notes in computer science, vol 6782. Springer-Verlag, Berlin, pp 60–75

    Chapter  Google Scholar 

  • Liu JQ, Hull V, Batistella M, DeFries R, Dietz T, Fu F, Hertel TW, Izaurralde RC, Lambin EF, Li S, Martinelli LA, McConnell W, Moran EF, Naylor R, Ouyang Z, Polenske KR, Reenberg A, de Miranda RG, Simmons CS, Verburg PH, Vitousek PM, Zhang F, Zhu C (2013) Framing sustainability in a telecoupled world. Ecol Soc 18:26

    Article  CAS  Google Scholar 

  • Lotze-Campen H, Verburg PH, Popp A, Lindner M, Verkerk PJ, Moiseyev A, Schrammeijer E, Helming J, Tabeau A, Schulp CJE, van der Zanden EH, Lavalle C, e Silva FB, Walz A, Bodirsky B (2017) A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways. Reg Environ Change 18:751–762. https://link.springer.com/article/10.1007/s10113-017-1167-8

    Article  Google Scholar 

  • Mallampalli VR, Mavrommati G, Thompson J, Duveneck M, Meyer S, Ligmann-Zielinska A, Gottschalk DC, Hychka K, Kenney MA, Kok K, Borsuk ME (2016) Methods for translating narrative scenarios into quantitative assessments of land use change. Environ Model Softw 82:6–20. https://doi.org/10.1016/j.envsoft.2016.04.011

    Article  Google Scholar 

  • Maron M, Fitzsimons JA (2007) Agricultural intensification and loss of matrix habitat over 23 years in the west Wimmera, South-Eastern Australia. Biol Conserv 135:587–593. https://doi.org/10.1016/j.biocon.2006.10.051

    Article  Google Scholar 

  • Mas JF, Kolb M, Paegelow M, Camacho Olmedo MT, Houet T (2014) Modeling land use/cover changes: a comparison of conceptual approaches and softwares. Environ Model Softw 51:94–111

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. https://doi.org/10.1126/science.277.5325.504

    Article  CAS  PubMed  Google Scholar 

  • Meyfroidt P, Lambin EF, Erb K-H, Hertel TW (2013) Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr Opin Environ Sustain 5:438–444

    Article  Google Scholar 

  • Millington JD, Wainwright J (2016) Comparative approaches for innovation in agent-based modelling of landscape change. Land 5:13. https://doi.org/10.3390/land5020013

    Article  Google Scholar 

  • Murgue C, Therond O, Leenhardt D (2016) Hybridizing local and generic information to model cropping system spatial distribution in an agricultural landscape. Land Use Policy 54:339–354. https://doi.org/10.1016/j.landusepol.2016.02.020

    Article  Google Scholar 

  • Nassauer JI, Corry RC (2004) Using normative scenarios in landscape ecology. Landsc Ecol 19:343–356. https://doi.org/10.1023/B:LAND.0000030666.55372.ae

    Article  Google Scholar 

  • O’Neill RV, Gardner RH, Turner MG (1992) A hierarchical neutral model for landscape analysis. Landsc Ecol 7:55–61

    Article  Google Scholar 

  • Olabisi L, Wang R, Ligmann-Zielinska A (2015) Why don’t more farmers go organic? Using a stakeholder informed exploratory agent-based model to represent the dynamics of farming practices in the Philippines. Land 4:979–1002. http://www.mdpi.com/2073-445X/4/4/979

    Article  Google Scholar 

  • Ornetsmüller C, Verburg PH, Heinimann A (2016) Scenarios of land system change in the Lao PDR: transitions in response to alternative demands on goods and services provided by the land. Appl Geogr 75:1–11

    Article  Google Scholar 

  • Paegelow M, Camacho Olmedo MT, Mas JF, Houet T (2014) Benchmarking of LUCC modeling tools by various validation techniques and error analysis. Cybergeo 701. http://cybergeo.revues.org/26610

  • Pontius RG, Boersma W, Castella JC, Clarke K, de Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E, Lippitt CD, McConnell W, Sood AM, Pijankowski B, Pidhadia S, Sweeney S, Trung TN, Veldkamp T, Verburg P (2008) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42(1):11–27

    Article  Google Scholar 

  • Price B, Kienast F, Seidl I, Ginzler C, Verburg P, Bolliger J (2014) Future landscapes of Switzerland: risk areas for urbanisation and land abandonment. Appl Geogr 57:32–41

    Article  Google Scholar 

  • Renwick A, Jansson T, Verburg PH, Revoredo-Giha C, Britz W, Gocht A, McCracken D (2013) Policy reform and agricultural land abandonment in the EU. Land Use Policy 30:446–457

    Article  Google Scholar 

  • Rindfuss RR, Walsh SJ, Turner B, Fox J, Mishra V (2004) Developing a science of land change: challenges and methodological issues. PNAS 101(39):13976–13981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpää S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck G (2006) A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68

    Article  Google Scholar 

  • Rounsevell MDA, Pedroli B, Erb KH, Gramberger M, Busck AG, Haberl H, Kristensen S, Kuemmerle T, Lavorel S, Lindner M, Lotze-Campen H, Metzger MJ, Murray-Rust D, Popp A, Pérez-Sobab M, Reenberg A, Vadineanu A, Verburg PH, Wolfslehner B (2012) Challenges for land system science. Land Use Policy 29:899–910

    Article  Google Scholar 

  • Schaller N, Lazrak EG, Martin P, Mari JF, Aubry C, Benoît M (2012) Combining farmers’ decision rules and landscape stochastic regularities for landscape modelling. Landsc Ecol 27:433–446. https://doi.org/10.1007/s10980-011-9691-2

    Article  Google Scholar 

  • Scheffran J, BenDor T (2009) Bioenergy and land use: a spatial-agent dynamic model of energy crop production in Illinois. Int J Environ Pollut 39:4–27

    Article  CAS  Google Scholar 

  • Sengupta R, Lant C, Kraft S, Beaulieu J, Peterson W, Loftus T (2005) Modeling enrollment in the Conservation Reserve Program by using agents within spatial decision support systems: an example from southern Illinois. Environ Plan B 32:821–834

    Article  Google Scholar 

  • Siebert R, Toogood M, Knierim A (2006) Factors affecting European farmers’ participation in biodiversity policies. Sociol Rural 46:318–340

    Article  Google Scholar 

  • Sohl TL, Sayler KL, Drummond MA, Loveland TR (2007) The FORE-SCE model: a practical approach for projecting land use change using scenario-based modeling. J Land Use Sci 2(2):103–126

    Article  Google Scholar 

  • Sohl TL, Sayler KL, Bouchard MA, Reker RR, Friesz AM, Bennett SL, Sleeter BM, Sleeter RR, Wilson TS, Knuppe M, Van Hofwegen T (2014) Spatially explicit modeling of 1992 to 2100 land cover and forest stand age for the conterminous United States. Ecol Appl 24(5):1015–1036. https://doi.org/10.1890/13-1245.1

    Article  PubMed  Google Scholar 

  • Sohl T, Reker R, Bouchard M, Sayler K, Dornbierer J, Wika S, Quenzer R, Freisz A (2016) Modeled historical land use and land cover for the conterminous United States. J Land Use Sci 11(4):476–499. https://doi.org/10.1080/1747423X.2016.1147619

    Article  Google Scholar 

  • Sorel L, Viaud V, Durand P, Mérot P (2010) Modeling spatio-temporal crop allocation patterns by a stochastic decision tree method, considering agronomic driving factors. Agric Syst 103:647–655. https://doi.org/10.1016/j.agsy.2010.08.003

    Article  Google Scholar 

  • Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C (2015) The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev 21(1):81–98

    Article  Google Scholar 

  • Sterman JD (2000) Business dynamics: systems thinking and modeling for a complex world. McGraw-Hill, Irwin

    Google Scholar 

  • Stürck J, Levers C, van der Zanden EH, Schulp CJE, Verkerk PJ, Kuemmerle T, Helming J, Lotze-Campen H, Tabeau A, Popp A, Schrammeijer E, Verburg P (2015) Simulating and delineating future land change trajectories across Europe. Reg Environ Change 18:733–749. https://doi.org/10.1007/s10113-015-0876-0

    Article  Google Scholar 

  • Thenail C, Joannon A, Capitaine M, Souchère V, Mignolet C, Schermann N, Di Pietro F, Pons Y, Gaucherel C, Viaud V, Baudry J (2009) The contribution of crop-rotation organization in farms to crop-mosaic patterning at local landscape scales. Agric Ecosyst Environ 131(3–4):207–219

    Article  Google Scholar 

  • Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. PNAS 104:20666–20671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valbuena D, Verburg P, Bregt AK, Ligtenberg A (2009) An agent-based approach to model land-use change at a regional scale. Landsc Ecol 25(2):185–199. https://doi.org/10.1007/s10980-009-9380-6

    Article  Google Scholar 

  • van Vliet M, Kok K, Veldkamp T (2010) Linking stakeholders and modellers in scenario studies: the use of fuzzy cognitive maps as a communication and learning tool. Futures 42(1):1–14

    Article  Google Scholar 

  • van Vliet J, Bregt AK, Brown DG, van Delden H, Verburg HS, P.H. (2016) A review of current calibration and validation practices in land change modeling. Environ Model Softw 82:174–182

    Article  Google Scholar 

  • Verburg PH, Overmars K (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc Ecol 24:1167–1181. https://doi.org/10.1007/s10980-009-9355-7

    Article  Google Scholar 

  • Verburg PH, Schot PP, Dijst MJ, Veldkamp T (2004) Land use change modelling: current practice and research priorities. GeoJournal 61(4):309–324. https://doi.org/10.1007/s10708-004-4946-y

    Article  Google Scholar 

  • Verburg P, Eickhout B, van Meijl H (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42(1):57–77

    Article  Google Scholar 

  • Verburg P, Van Berkel D, Van Doorn A, Van Eupen E, Van den Heiligenberg H (2010) Trajectories of land use change in Europe: a model-based exploration of rural futures. Landsc Ecol 25(2):217–232

    Article  Google Scholar 

  • Verburg PH, Crossman N, Ellis EC, Heinimann A, Hostert P, Mertz O, Nagendra H, Sikor T, Erb K-H, Golubiewski N, Grau R, Grove M, Konaté S, Meyfroidt P, Parker DC, Chowdhury RR, Shibata H, Thomson A, Zhen L (2015) Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12:29–41. https://doi.org/10.1016/j.ancene.2015.09.004

    Article  Google Scholar 

  • Verburg PH, Dearing JA, Dyke JG, van der Leeuw S, Seitzinger S, Steffen W, Syvitski J (2016) Methods and approaches to modelling the Anthropocene. Glob Environ Chang 39:328–340. https://doi.org/10.1016/j.gloenvcha.2015.08.007

    Article  Google Scholar 

  • Wack P (1985a) Scenarios: uncharted waters ahead. Harv Bus Rev 63:73–89

    Google Scholar 

  • Wack P (1985b) Scenarios: shooting the rapids. Harv Bus Rev 63:139–150

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two reviewers for their helpful comments and suggestions on an earlier draft. Note from the authors: This contribution has been written and submitted in 2016 by the authors. They thus would like to disclaim for not integrating up-to-date references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Houet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Houet, T., Verburg, P.H. (2022). Exploring Futures in Landscape Agronomy: Methodological Issues and Prospects of Combining Scenarios and Spatially Explicit Models. In: Rizzo, D., Marraccini, E., Lardon, S. (eds) Landscape Agronomy. Springer, Cham. https://doi.org/10.1007/978-3-031-05263-7_5

Download citation

Publish with us

Policies and ethics