Skip to main content

The Neurosurgical Management of Pain

  • Chapter
  • First Online:
Multidisciplinary Spine Care

Abstract

Neurosurgical intervention provides an effective treatment option for many medically refractory patients. Ablative procedures are beneficial for many patients with focal peripheral nerve injuries. Neuromodulation has great potential to alleviate pain, without the irreversibility of ablative procedures. Ongoing research will further enhance the capacity of neurosurgeons to treat pain by continuing to innovate technologically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spiller WG, Martin E. The treatment of persistent pain of organic origin in the lower part of the body by division of the anterolateral column of the spinal cord. J Am Med Assoc. 1912;LVIII(20):1489–90.

    Article  Google Scholar 

  2. Raslan AM, McCartney S, Burchiel KJ. Management of chronic severe pain: spinal neuromodulatory and neuroablative approaches. Acta Neurochir Suppl. 2007;97(Pt 1):33–41.

    CAS  PubMed  Google Scholar 

  3. Raslan AM, McCartney S, Burchiel KJ. Management of chronic severe pain: cerebral neuromodulatory and neuroablative approaches. Acta Neurochir Suppl. 2007;97(Pt 2):17–26.

    Article  CAS  PubMed  Google Scholar 

  4. Konrad P. Dorsal root entry zone lesion, midline myelotomy and anterolateral cordotomy. Neurosurg Clin N Am. 2014;25(4):699–722.

    Article  PubMed  Google Scholar 

  5. Javed S, Viswanathan A, Abdi S. Cordotomy for intractable cancer pain: a narrative review. Pain Physician. 2020;23(3):283–92.

    PubMed  Google Scholar 

  6. Gildenberg PL, et al. Impedance measuring device for detection of penetration of the spinal cord in anterior percutaneous cervical cordotomy. Technical note. J Neurosurg. 1969;30(1):87–92.

    Article  CAS  PubMed  Google Scholar 

  7. Raslan AM. Percutaneous computed tomography-guided radiofrequency ablation of upper spinal cord pain pathways for cancer-related pain. Neurosurgery. 2008;62(3 Suppl 1):226–33; discussion 233–4.

    PubMed  Google Scholar 

  8. Falci S, et al. Dorsal root entry zone microcoagulation for spinal cord injury-related central pain: operative intramedullary electrophysiological guidance and clinical outcome. J Neurosurg. 2002;97(2 Suppl):193–200.

    PubMed  Google Scholar 

  9. Haninec P, et al. Usefulness of screening tools in the evaluation of long-term effectiveness of DREZ lesioning in the treatment of neuropathic pain after brachial plexus injury. BMC Neurol. 2014;14:225.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Friedman AH, Bullitt E. Dorsal root entry zone lesions in the treatment of pain following brachial plexus avulsion, spinal cord injury and herpes zoster. Appl Neurophysiol. 1988;51(2–5):164–9.

    CAS  PubMed  Google Scholar 

  11. Kanpolat Y, et al. Spinal and nucleus caudalis dorsal root entry zone operations for chronic pain. Neurosurgery. 2008;62(3 Suppl 1):235–42; discussion 242–4.

    PubMed  Google Scholar 

  12. Chivukula S, et al. Spinal and nucleus caudalis dorsal root entry zone lesioning for chronic pain: efficacy and outcomes. World Neurosurg. 2015;84(2):494–504.

    Article  PubMed  Google Scholar 

  13. Vedantam A, et al. Limited midline myelotomy for intractable visceral pain: surgical techniques and outcomes. Neurosurgery. 2018;83(4):783–9.

    Article  PubMed  Google Scholar 

  14. Hong D, Andren-Sandberg A. Punctate midline myelotomy: a minimally invasive procedure for the treatment of pain in inextirpable abdominal and pelvic cancer. J Pain Symptom Manag. 2007;33(1):99–109.

    Article  Google Scholar 

  15. Lipinski LJ, Spinner RJ. Neurolysis, neurectomy, and nerve repair/reconstruction for chronic pain. Neurosurg Clin N Am. 2014;25(4):777–87.

    Article  PubMed  Google Scholar 

  16. Lu VM, et al. Meralgia paresthetica treated by injection, decompression, and neurectomy: a systematic review and meta-analysis of pain and operative outcomes. J Neurosurg. 2021;135:912–22.

    Article  Google Scholar 

  17. Lu VM, et al. Treating Morton’s neuroma by injection, neurolysis, or neurectomy: a systematic review and meta-analysis of pain and satisfaction outcomes. Acta Neurochir (Wien). 2021;163(2):531–43.

    Article  Google Scholar 

  18. Burchiel KJ, Raslan AM. Contemporary concepts of pain surgery. J Neurosurg. 2019;130(4):1039–49.

    Article  PubMed  Google Scholar 

  19. North RB, et al. Dorsal root ganglionectomy for failed back surgery syndrome: a 5-year follow-up study. J Neurosurg. 1991;74(2):236–42.

    Article  CAS  PubMed  Google Scholar 

  20. Taub A, Robinson F, Taub E. Dorsal root ganglionectomy for intractable monoradicular sciatica. A series of 61 patients. Stereotact Funct Neurosurg. 1995;65(1–4):106–10.

    Article  CAS  PubMed  Google Scholar 

  21. Weigel R, et al. Selective thoracic ganglionectomy for the treatment of segmental neuropathic pain. Eur J Pain. 2012;16(10):1398–402.

    Article  CAS  PubMed  Google Scholar 

  22. Khan FR, Henderson JM. Does ganglionectomy still have a role in the era of neuromodulation? World Neurosurg. 2012;77(2):280–2.

    Article  PubMed  Google Scholar 

  23. Acar F, et al. Pain relief after cervical ganglionectomy (C2 and C3) for the treatment of medically intractable occipital neuralgia. Stereotact Funct Neurosurg. 2008;86(2):106–12.

    Article  PubMed  Google Scholar 

  24. Pisapia JM, et al. Salvage C2 ganglionectomy after C2 nerve root decompression provides similar pain relief as a single surgical procedure for intractable occipital neuralgia. World Neurosurg. 2012;77(2):362–9.

    Article  PubMed  Google Scholar 

  25. Banks GP, et al. Neuroanatomical characteristics associated with response to dorsal anterior cingulotomy for obsessive-compulsive disorder. JAMA Psychiat. 2015;72(2):127–35.

    Article  Google Scholar 

  26. Viswanathan A, et al. Cingulotomy for medically refractory cancer pain. Neurosurg Focus. 2013;35(3):E1.

    Article  PubMed  Google Scholar 

  27. Sharim J, Pouratian N. Anterior cingulotomy for the treatment of chronic intractable pain: a systematic review. Pain Physician. 2016;19(8):537–50.

    PubMed  Google Scholar 

  28. Gallay MN, Moser D, Jeanmonod D. MR-guided focused ultrasound central lateral thalamotomy for trigeminal neuralgia. Single center experience. Front Neurol. 2020;11:271.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeanmonod D, et al. Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus. 2012;32(1):E1.

    Article  PubMed  Google Scholar 

  30. Roberts DG, Pouratian N. Stereotactic radiosurgery for the treatment of chronic intractable pain: a systematic review. Oper Neurosurg (Hagerstown). 2017;13(5):543–51.

    Article  Google Scholar 

  31. Urgosik D, Liscak R. Medial Gamma Knife thalamotomy for intractable pain. J Neurosurg. 2018;129(Suppl1):72–6.

    Article  PubMed  Google Scholar 

  32. Kim DR, Lee SW, Son BC. Stereotactic mesencephalotomy for cancer – related facial pain. J Korean Neurosurg Soc. 2014;56(1):71–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ivanishvili Z, et al. Stereotactic mesencephalotomy for palliative care pain control: a case report, literature review and plea to rediscover this operation. Br J Neurosurg. 2016;30(4):444–7.

    Article  PubMed  Google Scholar 

  34. Bosch DA. Stereotactic rostral mesencephalotomy in cancer pain and deafferentation pain. A series of 40 cases with follow-up results. J Neurosurg. 1991;75(5):747–51.

    Article  CAS  PubMed  Google Scholar 

  35. Amano K, et al. Stereotactic mesencephalotomy for pain relief. A plea for stereotactic surgery. Stereotact Funct Neurosurg. 1992;59(1–4):25–32.

    Article  CAS  PubMed  Google Scholar 

  36. Ramirez LF, Levin AB. Pain relief after hypophysectomy. Neurosurgery. 1984;14(4):499–504.

    CAS  PubMed  Google Scholar 

  37. Larkin MB, et al. Stereotactic radiosurgery hypophysectomy for palliative treatment of refractory cancer pain: a historical review and update. Front Oncol. 2020;10:572557.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Richardson DE, Akil H. Pain reduction by electrical brain stimulation in man. Part 1: Acute administration in periaqueductal and periventricular sites. J Neurosurg. 1977;47(2):178–83.

    Article  CAS  PubMed  Google Scholar 

  39. Richardson DE, Akil H. Pain reduction by electrical brain stimulation in man. Part 2: Chronic self-administration in the periventricular gray matter. J Neurosurg. 1977;47(2):184–94.

    Article  CAS  PubMed  Google Scholar 

  40. Hosobuchi Y, Adams JE, Linchitz R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science. 1977;197(4299):183–6.

    Article  CAS  PubMed  Google Scholar 

  41. Parmar VK, et al. Supraspinal stimulation for treatment of refractory pain. Clin Neurol Neurosurg. 2014;123:155–63.

    Article  CAS  PubMed  Google Scholar 

  42. Levy R, Deer TR, Henderson J. Intracranial neurostimulation for pain control: a review. Pain Physician. 2010;13(2):157–65.

    PubMed  Google Scholar 

  43. Falowski SM. Deep brain stimulation for chronic pain. Curr Pain Headache Rep. 2015;19(7):27.

    Article  PubMed  Google Scholar 

  44. Brown JA, Pilitsis JG. Motor cortex stimulation for central and neuropathic facial pain: a prospective study of 10 patients and observations of enhanced sensory and motor function during stimulation. Neurosurgery. 2005;56(2):290–7; discussion 290–7.

    Article  PubMed  Google Scholar 

  45. Levy RM. Deep brain stimulation for the treatment of intractable pain. Neurosurg Clin N Am. 2003;14(3):389–99, vi.

    Article  PubMed  Google Scholar 

  46. Bittar RG, et al. Deep brain stimulation for pain relief: a meta-analysis. J Clin Neurosci. 2005;12(5):515–9.

    Article  PubMed  Google Scholar 

  47. Boccard SG, et al. Long-term outcomes of deep brain stimulation for neuropathic pain. Neurosurgery. 2013;72(2):221–30; discussion 231.

    Article  PubMed  Google Scholar 

  48. Boccard SGJ, et al. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain. World Neurosurg. 2017;106:625–37.

    Article  PubMed  Google Scholar 

  49. Lempka SF, et al. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann Neurol. 2017;81(5):653–63.

    Article  PubMed  Google Scholar 

  50. Fontaine D, et al. Safety and efficacy of deep brain stimulation in refractory cluster headache: a randomized placebo-controlled double-blind trial followed by a 1-year open extension. J Headache Pain. 2010;11(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  51. Mo JJ, et al. Motor cortex stimulation: a systematic literature-based analysis of effectiveness and case series experience. BMC Neurol. 2019;19(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Henssen D, et al. Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: a systematic review and meta-analysis. Sci Rep. 2020;10(1):7195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sachs AJ, et al. Lack of efficacy of motor cortex stimulation for the treatment of neuropathic pain in 14 patients. Neuromodulation. 2014;17(4):303–10; discussion 310–11.

    Article  PubMed  Google Scholar 

  54. Henderson JM, Heit G, Fisher RS. Recurrent seizures related to motor cortex stimulator programming. Neuromodulation. 2010;13(1):37–43.

    Article  PubMed  Google Scholar 

  55. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.

    Article  CAS  PubMed  Google Scholar 

  56. Shealy CN, Mortimer JT, Hagfors NR. Dorsal column electroanalgesia. J Neurosurg. 1970;32(5):560–4.

    Article  CAS  PubMed  Google Scholar 

  57. Jeon YH. Spinal cord stimulation in pain management: a review. Korean J Pain. 2012;25(3):143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jensen MP, Brownstone RM. Mechanisms of spinal cord stimulation for the treatment of pain: still in the dark after 50 years. Eur J Pain. 2019;23(4):652–9.

    Article  PubMed  Google Scholar 

  59. Barchini J, et al. Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience. 2012;215:196–208.

    Article  CAS  PubMed  Google Scholar 

  60. Oakley JC. Spinal cord stimulation: patient selection, technique, and outcomes. Neurosurg Clin N Am. 2003;14(3):365–80, vi.

    Article  PubMed  Google Scholar 

  61. Duarte RV, et al. Systematic review and meta-analysis of placebo/sham controlled randomised trials of spinal cord stimulation for neuropathic pain. Pain. 2020;161(1):24–35.

    Article  PubMed  Google Scholar 

  62. Conger A, et al. The effectiveness of spinal cord stimulation for the treatment of axial low back pain: a systematic review with narrative synthesis. Pain Med. 2020;21(11):2699–712.

    Article  PubMed  Google Scholar 

  63. North RB, et al. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery. 2005;56(1):98–106; discussion 106–7.

    Article  PubMed  Google Scholar 

  64. Wang S, et al. Spinal cord stimulation versus other therapies in patients with refractory angina: a meta-analysis. Transl Perioper Pain Med. 2017;2(1):31–41.

    PubMed  PubMed Central  Google Scholar 

  65. Pan X, et al. Spinal cord stimulation for refractory angina pectoris: a systematic review and meta-analysis. Clin J Pain. 2017;33(6):543–51.

    Article  PubMed  Google Scholar 

  66. Eldabe S, Buchser E, Duarte RV. Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med. 2016;17(2):325–36.

    PubMed  Google Scholar 

  67. Yaksh TL, Rudy TA. Analgesia mediated by a direct spinal action of narcotics. Science. 1976;192(4246):1357–8.

    Article  CAS  PubMed  Google Scholar 

  68. Deer TR, et al. Intrathecal therapy for chronic pain: a review of morphine and ziconotide as firstline optionsin. Pain Med. 2019;20(4):784–98.

    Article  PubMed  Google Scholar 

  69. Raffa RB, Pergolizzi JV Jr. Intracerebroventricular opioids for intractable pain. Br J Clin Pharmacol. 2012;74(1):34–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bottros MM, Christo PJ. Current perspectives on intrathecal drug delivery. J Pain Res. 2014;7:615–26.

    PubMed  PubMed Central  Google Scholar 

  71. Grider JS, et al. Trialing and maintenance dosing using a low-dose intrathecal opioid method for chronic nonmalignant pain: a prospective 36-month study. Neuromodulation. 2016;19(2):206–19.

    Article  PubMed  Google Scholar 

  72. Grider JS, Harned ME, Etscheidt MA. Patient selection and outcomes using a low-dose intrathecal opioid trialing method for chronic nonmalignant pain. Pain Physician. 2011;14(4):343–51.

    Article  PubMed  Google Scholar 

  73. Deer TR, et al. The polyanalgesic consensus conference (PACC): recommendations for trialing of intrathecal drug delivery infusion therapy. Neuromodulation. 2017;20(2):133–54.

    Article  PubMed  Google Scholar 

  74. McDowell GC 2nd, Pope JE. Intrathecal ziconotide: dosing and administration strategies in patients with refractory chronic pain. Neuromodulation. 2016;19(5):522–32.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pope JE, Deer TR. Intrathecal pharmacology update: novel dosing strategy for intrathecal monotherapy ziconotide on efficacy and sustainability. Neuromodulation. 2015;18(5):414–20.

    Article  PubMed  Google Scholar 

  76. Ferroli P, et al. Advanced age as a contraindication to microvascular decompression for drug-resistant trigeminal neuralgia: evidence of prejudice? Neurol Sci. 2010;31(1):23–8.

    Article  PubMed  Google Scholar 

  77. Burchiel KJ. A new classification for facial pain. Neurosurgery. 2003;53(5):1164–6; discussion 1166–7.

    Article  PubMed  Google Scholar 

  78. Eller JL, Raslan AM, Burchiel KJ. Trigeminal neuralgia: definition and classification. Neurosurg Focus. 2005;18(5):E3.

    Article  PubMed  Google Scholar 

  79. Sandwell SE, El-Naggar AO. Nucleus caudalis dorsal root entry zone lesioning for the treatment of anesthesia dolorosa. J Neurosurg. 2013;118(3):534–8.

    Article  PubMed  Google Scholar 

  80. Zakrzewska JM. Medical management of trigeminal neuropathic pains. Expert Opin Pharmacother. 2010;11(8):1239–54.

    Article  CAS  PubMed  Google Scholar 

  81. Broggi G, et al. Surgical technique for trigeminal microvascular decompression. Acta Neurochir (Wien). 2012;154(6):1089–95.

    Article  Google Scholar 

  82. Bick SK, et al. Older patients have better pain outcomes following microvascular decompression for trigeminal neuralgia. Neurosurgery. 2019;84(1):116–22.

    Article  PubMed  Google Scholar 

  83. Bick SKB, Eskandar EN. Surgical treatment of trigeminal neuralgia. Neurosurg Clin N Am. 2017;28(3):429–38.

    Article  PubMed  Google Scholar 

  84. Holste K, et al. Pain outcomes following microvascular decompression for drug-resistant trigeminal neuralgia: a systematic review and meta-analysis. Neurosurgery. 2020;86(2):182–90.

    Article  PubMed  Google Scholar 

  85. Sindou M, et al. Microvascular decompression for primary trigeminal neuralgia: long-term effectiveness and prognostic factors in a series of 362 consecutive patients with clear-cut neurovascular conflicts who underwent pure decompression. J Neurosurg. 2007;107(6):1144–53.

    Article  PubMed  Google Scholar 

  86. Noorani I, et al. Comparison of first-time microvascular decompression with percutaneous surgery for trigeminal neuralgia: long-term outcomes and prognostic factors. Acta Neurochir (Wien). 2021;163(6):1623–34.

    Article  Google Scholar 

  87. Texakalidis P, et al. Comparative safety and efficacy of percutaneous approaches for the treatment of trigeminal neuralgia: a systematic review and meta-analysis. Clin Neurol Neurosurg. 2019;182:112–22.

    Article  PubMed  Google Scholar 

  88. Noorani I, et al. The effectiveness of percutaneous balloon compression, thermocoagulation, and glycerol rhizolysis for trigeminal neuralgia in multiple sclerosis. Neurosurgery. 2019;85(4):E684–92.

    Article  PubMed  Google Scholar 

  89. Wang DD, et al. Prospective comparison of long-term pain relief rates after first-time microvascular decompression and stereotactic radiosurgery for trigeminal neuralgia. J Neurosurg. 2018;128(1):68–77.

    Article  PubMed  Google Scholar 

  90. Raygor KP, et al. Long-term pain outcomes for recurrent idiopathic trigeminal neuralgia after stereotactic radiosurgery: a prospective comparison of first-time microvascular decompression and repeat stereotactic radiosurgery. J Neurosurg. 2018;131:1207–15.

    Article  Google Scholar 

  91. Patra DP, et al. Repeat Gamma Knife radiosurgery versus microvascular decompression following failure of GKRS in trigeminal neuralgia: a systematic review and meta-analysis. J Neurosurg. 2018;131:1197–206.

    Article  Google Scholar 

  92. Spina A, et al. Efficacy of Gamma Knife radiosurgery in the management of multiple sclerosis-related trigeminal neuralgia: a systematic review and meta-analysis. Neurosurg Rev. 2021;44(6):3069–77.

    Article  PubMed  Google Scholar 

  93. Sweet JA, et al. Occipital nerve stimulation for the treatment of patients with medically refractory occipital neuralgia: Congress of Neurological Surgeons systematic review and evidence-based guideline. Neurosurgery. 2015;77(3):332–41.

    Article  PubMed  Google Scholar 

  94. Salmasi V, et al. Peripheral nerve stimulation for occipital neuralgia. Pain Med. 2020;21(Suppl 1):S13–7.

    Article  PubMed  Google Scholar 

  95. Urits I, et al. A review of the recent findings in minimally invasive treatment options for the management of occipital neuralgia. Neurol Ther. 2020;9(2):229–41.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jose A, et al. Greater occipital nerve decompression for occipital neuralgia. J Craniofac Surg. 2018;29(5):e518–21.

    Article  PubMed  Google Scholar 

  97. Keifer OP Jr, et al. Occipital nerve stimulation for the treatment of refractory occipital neuralgia: a case series. World Neurosurg. 2017;105:599–604.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazin Al Tamimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montgomery, E., Wolfe, C., Traylor, J., Aoun, S.G., Al Tamimi, M. (2022). The Neurosurgical Management of Pain. In: Noe, C.E. (eds) Multidisciplinary Spine Care. Springer, Cham. https://doi.org/10.1007/978-3-031-04990-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04990-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04989-7

  • Online ISBN: 978-3-031-04990-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics