Skip to main content

Optimal Control with Prediction for the Process of Vacuum Membrane Distillation

  • Conference paper
  • First Online:
Advances in Artificial Systems for Logistics Engineering (ICAILE 2022)

Abstract

One of the possible options for renewable energy is the use of bioethanol biofuels. To concentrate bioethanol, it is effective to use the process of vacuum membrane distillation. Membrane process is a relatively new and one of the most effective ways to separate multicomponent mixtures. Membrane distillation has many features compared to traditional separation methods, such as: low operating temperature of the process; the solution to be separated must not be heated to boiling point. A mathematical model of the process of vacuum membrane distillation is proposed and investigated. A control system has been developed using the method of analysis and synthesis of predictive control model (MPC) control systems based on mathematical optimization methods using predictive models. The method is chosen because the membrane changes its properties over time and can provide better control of the process over a long period of time. The systems of automatic control of a non-stationary dynamic object based on the MPC controller and the PID controller with fuzzy logic are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burban, A.F.: Membrane distillation in the processes of water treatment, desalination and wastewater treatment. Sci. Notes 157, 15–24 (2014)

    Google Scholar 

  2. Drioli, E., Romano, M.: Progress and new perspectives on integrated membrane operations for sustainable industrial growth. Ind. Eng. Chem. Res. 40, 1277–1300 (2001)

    Article  Google Scholar 

  3. Bryk, M.T., Nigmatullin, R.R.: Membrane distillation. Adv. Chem. 12(63), 1114–1129 (1994)

    Google Scholar 

  4. Alkhudhiri, A., Darwish, N., Hilal, N.: Membrane distillation: a comprehensive review. Desalination 287, 3–18 (2012)

    Google Scholar 

  5. Khayet, M.: Membranes and theoretical modeling of membrane distillation: a review. Adv. Coll. Interface. Sci. 164, 56–88 (2011)

    Article  Google Scholar 

  6. Ugrozov, V.V.: Mathematical modeling of the process of contact membrane distillation in a flow-through module. TOCT 28(4), 375–380 (1994)

    Google Scholar 

  7. Benavides-Prada, O.A., Guevara-Lastre, C.A., Barón-Núñez, F.W.: Vacuum membrane distillation: modeling and analysis for recovery of ethanol from ethanol/water solutions. J. Oil Gas Energy 5(2), 47–57 (2013)

    Google Scholar 

  8. Ladieva, L.R., Zhulinsky, O.A.: Mathematical model of the process of contact membrane distillation. Autom. Autom. Electrotech. Complexes Syst. 2(14), 46–51 (2004)

    Google Scholar 

  9. Ladieva, L.R., Zhulinsky, O.A.: Mathematical model of the dynamics of the contact membrane distillation process. Autom. Prod. Process. 1(20), 19–21 (2005)

    Google Scholar 

  10. Ladieva, L.R., Onishchenko, V.O., Dubik, R.M.: Mathematical modeling of temperature distribution in the membrane module in the process of membrane distillation. Sci.-intensive Technol. 1(25), 5–8 (2015)

    Google Scholar 

  11. Ladieva, L.R., Dubik, R.M.: Mathematical model of heat exchange in the process of contact membrane distillation. Energy Econ. Technol. Ecol. 1(28), 10–16 (2011)

    Google Scholar 

  12. Ladieva, L.R., Bereza, O.M.: Patent for utility model 144730. Method for automatic control of membrane distillation process. Bull. 20 (2020). Declared 12 March 2020, Published 26 October 2020

    Google Scholar 

  13. Ladieva, L.R., Bereza, O.M.: Mathematical modeling of vacuum membrane distillation process in ethanol production. Sci.-intensive Technol. 1(49), 77–82 (2021). https://doi.org/10.18372/2310-5461.49.15293

    Article  Google Scholar 

  14. Denisenko, N.A., Rogachev, A.I.: The problem of optimal control with prediction for a quadratic functional. Bull. Vinnytsia Polytechnic Inst. 6, 10–13 (2006)

    Google Scholar 

  15. Veremey, E.I., Eremeev, V.V.: Introduction to management problems based on predictions. All-Russian scientific conference “Design of scientific and engineering applications in the MATLAB environment”, pp. 98–115 (2004)

    Google Scholar 

  16. Goryunov, A.G., Nadezhdin, I.S., Manenti, F.: Control systems for a nonstationary object based on an MPC controller and a PID controller with fuzzy logic. Manag. Large Syst. Anal. Synthesis Control Syst. 75, 50–75 (2018)

    Google Scholar 

  17. Korniyenko, B., Ladieva, L.: Method of static optimization of the process of granulation of mineral fertilizers in the fluidized bed. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2021. LNDECT, vol. 83, pp. 196–207. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80472-5_17

    Chapter  Google Scholar 

  18. Zhulynskyi, A.A., Ladieva, L.R., Korniyenko, B.Y.: Parametric identification of the process of contact membrane distillation. ARPN J. Eng. Appl. Sci. 14(17), 3108–3112 (2019)

    Google Scholar 

  19. Galata, L., Korniyenko, B.: Research of the training ground for the protection of critical information resources by iRisk method. In: Zawiślak, S., Rysiński, J. (eds.) Engineer of the XXI Century. MMS, vol. 70, pp. 227–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-13321-4_21

    Chapter  Google Scholar 

  20. Korniyenko, B.Y., Borzenkova, S.V., Ladieva, L.R.: Research of three-phase mathematical model of dehydration and granulation process in the fluidized bed. ARPN J. Eng. Appl. Sci. 14(12), 2329–2332 (2019)

    Google Scholar 

  21. Kornienko, Y.M., Liubeka, A.M., Sachok, R.V., Korniyenko, B.Y.: Modeling of heat exchangement in fluidized bed with mechanical liquid distribution. ARPN J. Eng. Appl. Sci. 14(12), 2203–2210 (2019)

    Google Scholar 

  22. Korniyenko, B., Galata, L., Ladieva, L.: Security estimation of the simulation polygon for the protection of critical information resources. Paper Presented at the CEUR Workshop Proceedings, vol. 2318, pp. 176–-187 (2018)

    Google Scholar 

  23. Galata, L.P., Korniyenko, B.Y., Yudin, A.K.: Research of the simulation polygon for the protection of critical information resources. Paper Presented at the CEUR Workshop Proceedings, vol. 2067, pp. 23–31 (2017)

    Google Scholar 

  24. Korniyenko, B., Osipa, L.: Identification of the granulation process in the fluidized bed. ARPN J. Eng. Appl. Sci. 13(14), 4365–4370 (2018)

    Google Scholar 

  25. Korniyenko, B., Galata, L.: Implementation of the information resources protection based on the CentOS operating system. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering, UKRCON 2019 – Proceedings 2019, pp. 1007–1011 (2019)

    Google Scholar 

  26. Zhuchenko, A.I., Cheropkin, Y.S., Osipa, R.A., Korniyenko, B.Y.: Features of mathematical modeling of the first stage of paper web drying. ARPN J. Eng. Appl. Sci. 15(5), 647–656 (2020)

    Google Scholar 

  27. Kornienko, Y.M., Haidai, S.S., Sachok, R.V., Liubeka, A.M., Korniyenko, B.Y.: Increasing of the heat and mass transfer processes efficiency with the application of non-uniform fluidization. ARPN J. Eng. Appl. Sci. 15(7), 890–900 (2020)

    Google Scholar 

  28. Korniyenko, B., Galata, L., Ladieva, L.: Research of information protection system of corporate network based on GNS3. In: 2019 IEEE International Conference on Advanced Trends in Information Theory, ATIT 2019 – Proceedings 2019, pp. 244–248 (2019)

    Google Scholar 

  29. Korniyenko, B., Galata, L., Ladieva, L.: Mathematical model of threats resistance in the critical information resources protection system. Paper Presented at the CEUR Workshop Proceedings, vol. 2577, pp. 281–291 (2019)

    Google Scholar 

  30. Korniyenko, B., Ladieva, L.: Mathematical modeling dynamics of the process dehydration and granulation in the fluidized bed. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2020. AISC, vol. 1247, pp. 18–30. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55506-1_2

    Chapter  Google Scholar 

  31. Zhuchenko, A.I., Yaroshchuk, L.D., Chechet, A.M., Makarov, T.V., Korniyenko, B.Y.: Position of the sustainable development in the system of soda production automation. ARPN J. Eng. Appl. Sci. 16(2), 255–269 (2021)

    Google Scholar 

  32. Korniyenko, B., Ladieva, L., Galata, L.: Control system for the production of mineral fertilizers in a granulator with a fluidized bed. In: Proceedings: 2020 2nd IEEE International Conference on Advanced Trends in Information Theory, ATIT 2020, vol. 349344, pp. 307–310 (2020). https://doi.org/10.1109/ATIT50783.2020.9349344

  33. Ladieva, L., Kozanevych, Z., Klusta, T., Korniyenko, B.: System of control of the process of alkylation of benzene with peripene in the liquid phase. In: Proceedings: 2020 2nd IEEE International Conference on Advanced Trends in Information Theory, ATIT 2020, vol. 9349330, pp. 311–314 (2020). https://doi.org/10.1109/ATIT50783.2020.9349330

  34. Kornienko, Y.M., Sachok, R., Tsepkalo, O.V.: Modelling of multifactor processes while obtaining multilayer humic-mineral solid composites. Chemistry 20(3), E19–E26 (2011)

    Google Scholar 

  35. Kornienko, Ya.N., Podmogilnyi, N.V., Silvestrov, A.N., Khotyachuk, R.F.: Current control of product granulometric composition in apparatus with fluidized layer. J. Autom. Inf. Sci. 31(12), 97–106 (1999)

    Google Scholar 

  36. Babak, V., Shchepetov, V., Nedaiborshch, S.: Wear resistance of nanocomposite coatings with dry lubricant under vacuum. Sci. Bull. Natl. Min. Univ. (1), 47–52 (2016)

    Google Scholar 

  37. Kravets, P., Shymkovych, V.: Hardware implementation neural network controller on FPGA for stability ball on the platform. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2019. AISC, vol. 938, pp. 247–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16621-2_23

    Chapter  Google Scholar 

  38. Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. In: Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M. (eds.) Diagnostic Systems For Energy Equipments. SSDC, vol. 281, pp. 23–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44443-3_2

    Chapter  Google Scholar 

  39. Shymkovych, V., Telenyk, S., Kravets, P.: Hardware implementation of radial-basis neural networks with Gaussian activation functions on FPGA. Neural Comput. Appl. 33(15), 9467–9479 (2021). https://doi.org/10.1007/s00521-021-05706-3

    Article  Google Scholar 

  40. Karthika, B.S., Deka, P.C.: Modeling of air temperature using ANFIS by wavelet refined parameters. Int. J. Intell. Syst. Appl. 8(1), 25–34 (2016). https://doi.org/10.5815/ijisa.2016.01.04

    Article  Google Scholar 

  41. Ghiasi-Freez, J., Hatampour, A., Parvasi, P.: Application of optimized neural network models for prediction of nuclear magnetic resonance parameters in carbonate reservoir rocks. Int. J. Intell. Syst. Appl. (IJISA) 7(6), 21–32 (2015). https://doi.org/10.5815/ijisa.2015.06.02

    Article  Google Scholar 

  42. Malekzadeh, M., Khosravi, A., Noei, A.R., Ghaderi, R.: Application of adaptive neural network observer in chaotic systems. Int. J. Intell. Syst. Appl. 6(2), 37–43 (2014). https://doi.org/10.5815/ijisa.2014.02.05

    Article  Google Scholar 

  43. Bhagawati, K., Bhagawati, R., Jini, D.: Intelligence and its application in agriculture: techniques to deal with variations and uncertainties. Int. J. Intell. Syst. Appl. (IJISA) 8(9), 56–61 (2016). https://doi.org/10.5815/ijisa.2016.09.07

    Article  Google Scholar 

  44. Wang, W., Cui, L., Li, Z.: Theoretical design and computational fluid dynamic analysis of projectile intake. Int. J. Intell. Syst. Appl. (IJISA) 3(5), 56–63 (2011). https://doi.org/10.5815/ijisa.2011.05.08

    Article  Google Scholar 

  45. Patnaik, P., Das, D.P., Mishra, S.K.: Adaptive inverse model of nonlinear systems. Int. J. Intell. Syst. Appl. 7(5), 40–47 (2015). https://doi.org/10.5815/ijisa.2015.05.06

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Korniyenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korniyenko, B., Ladieva, L., Bereza, O. (2022). Optimal Control with Prediction for the Process of Vacuum Membrane Distillation. In: Hu, Z., Zhang, Q., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Logistics Engineering. ICAILE 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-031-04809-8_4

Download citation

Publish with us

Policies and ethics