Skip to main content

Advertisement

Log in

Study on vacuum membrane distillation coupled with mechanical vapor recompression system for the concentration of sulfuric acid solution

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new vacuum membrane distillation (VMD) coupled with mechanical vapor recompression system for the concentration of sulfuric acid solution; the mathematical models based on the mass and energy balances in each part of the system are established. The influences of the corresponding operating parameters including feed concentration, feed temperature, feed velocity and permeate-side absolute pressure on membrane flux are investigated and discussed. The membrane flux increases with the increase in feed temperature and velocity, but it decreases with the increase in feed concentration and permeate-side absolute pressure. Furthermore, the energy consumption of the proposed system is explored through analyzing the influences from key factors, including boiling point elevation, temperature and concentration polarization and heat transfer temperature difference of heat exchanger on power consumption of compressor. Compared with the conventional VMD system and multi-effect MD system, the proposed system can save 77.6% and 20.4% energy due to a significant improvement in thermal efficiency by recovering the latent heat of vaporization. Eventually, an economic evaluation of the proposed system is performed comprehensively and the most optimized compression ratio of compressor can be obtained, which can guarantee the lowest energy consumption and total annual cost. Therefore, these results can provide significant references for the implementation and further optimization of the proposed system in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Heat transfer area of heat exchanger (m2)

A f :

Effective membrane area (m2)

C :

Cost ($)

C p :

Heat capacity of feed solution (kJ kg−1 °C−1)

d :

Flow channel hydraulic diameter (m)

D L :

Diffusion coefficient of the solute in solvent (m2 s−1)

e 1, e 2, e 3, e 4 :

The calculation precision

F :

Mass flow rate (kg s−1)

h :

Enthalpy (kJ kg−1)

h f :

Heat transfer coefficient at the feed solution boundary layer (W m−2 °C−1)

i :

Interest rate

k :

Isentropic exponent

K f :

Solute mass transfer coefficient across thermal boundary layer (m s−1)

K m :

Mass transfer coefficient across the membrane pores (kg m−2 s−1 Pa−1)

M :

Water molecular mass

N :

Membrane flux (kg m−2 h−1)

Nu :

Nusselt number

P m :

Mean pressure of membrane pore (kPa)

P P :

Pressure in the permeate side (kPa)

Pr :

Prandtl number

Q f :

Heat transfers from the bulk solution to the membrane surface through the boundary layer (W m−2)

Q m :

Heat transfers from the membrane surface to permeate side through the membrane (W m−2)

r :

Pore size (m)

R :

Universal gas constant (J mol−1 °C−1)

Re :

Reynolds number

Sc :

Schmidt number

Sh :

Sherwood number

T f :

Temperature of the feed bulk solution (°C)

T fm :

Temperature at the feed membrane surface (°C)

T m :

Mean temperature of membrane pore (°C)

U :

Overall coefficient of heat transfer of heat exchanger (W m−2 °C−1)

W :

Power (W)

x :

Solute mass fraction of the solution (%)

y, z, q :

Characteristic constants of the solution flow regime

ΔH :

Latent heat of vaporization (J kg−1)

Δt LMTD :

Logarithmic mean temperature difference of heat exchanger (°C)

BPE:

Boiling point elevation

CPC:

Concentration polarization coefficient

IC:

Investment cost ($)

MVR:

Mechanical vapor recompression

M&S:

Marshall and Swift index

OC:

Operating cost ($)

PTFE:

Polytetrafluoroethylene

TAC:

Total annual cost ($)

TPC:

Temperature polarization coefficient

VMD:

Vacuum membrane distillation

γ :

Mole fraction

δ :

Thickness (m)

ε :

Porosity

η :

Efficiency

θ:

Amortization year

λ :

Thermal conductivity of feed solution (W m−1 °C−1)

μ :

Dynamic viscosity of feed solution (Pa s−1)

ρ :

Density (kg m−3)

τ :

Tortuosity

φ:

Amortization factor

ψ :

Coefficient

B:

Boundary layer

com:

Compressor

ele:

Electricity

eva:

Evaporation

f:

Feed side

fm:

Membrane surface in feed side

hex:

Heat exchanger

L:

Liquid phase

m:

Membrane

me:

Mechanical

ms:

Membrane separator

p:

Pore, pressure, permeate side

sm:

Saturated state at the membrane surface

sp:

Saturated state in permeate side

th:

Thermal

References

  1. De Toni A, Hayashi T, Schneider P (2013) A reactor network model for predicting NOx emissions in an industrial natural gas burner. J Braz Soc Mech Sci Eng 35(3):199–206. https://doi.org/10.1007/s40430-013-0039-5

    Article  Google Scholar 

  2. Han D, He WF, Yue C (2017) Study on desalination of zero-emission system based on mechanical vapor compression. Appl Energy 185:1490–1496. https://doi.org/10.1016/j.apenergy.2015.12.061

    Article  Google Scholar 

  3. Agrawal A, Sahu KK (2009) An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J Hazard Mater 171(1–3):61–75. https://doi.org/10.1016/j.jhazmat.2009.06.099

    Article  Google Scholar 

  4. Barbarossa V, Brutti S, Diamanti M (2006) Catalytic thermal decomposition of sulphuric acid in sulphur–iodine cycle for hydrogen production. Int J Hydrogen Energy 31(7):883–890. https://doi.org/10.1016/j.ijhydene.2005.08.003

    Article  Google Scholar 

  5. Huminicki DMC, Rimstidt JD (2008) Neutralization of sulfuric acid solutions by calcite dissolution and the application to anoxic limestone drain design. Appl Geochem 23(2):148–165. https://doi.org/10.1016/j.apgeochem.2007.10.004

    Article  Google Scholar 

  6. Silva JE, Paiva AP, Soares D (2005) Solvent extraction applied to the recovery of heavy metals from galvanic sludge. J Hazard Mater 120(1–3):113–118. https://doi.org/10.1016/j.jhazmat.2004.12.008

    Article  Google Scholar 

  7. Liang L, Han D (2009) Experimental study on mechanical vapor recompression system. Chem Ind Eng Pro 28:358–360. https://doi.org/10.16085/j.issn.1000-6613.2009.s1.036 (In Chinese)

    Article  Google Scholar 

  8. Khalifa AE (2015) Water and air gap membrane distillation for water desalination–an experimental comparative study. Sep Purif Technol 141:276–284. https://doi.org/10.1016/j.seppur.2014.12.007

    Article  Google Scholar 

  9. Dao TD, Laborie S, Cabassud C (2016) Direct As (III) removal from brackish groundwater by vacuum membrane distillation: effect of organic matter and salts on membrane fouling. Sep Purif Technol 157:35–44. https://doi.org/10.1016/j.seppur.2015.11.018

    Article  Google Scholar 

  10. Mohamed ES, Boutikos P, Mathioulakis E (2017) Experimental evaluation of the performance and energy efficiency of a Vacuum Multi-Effect Membrane Distillation system. Desalination 408:70–80. https://doi.org/10.1016/j.desal.2016.12.020

    Article  Google Scholar 

  11. Zhang G, Zhang Q, Zhou K (1999) Study on concentrating sulfuric acid solution by vacuum membrane distillation. Journal of Central South University of Technology 6(2):99–102. https://doi.org/10.1007/s11771-999-0007-5

    Article  Google Scholar 

  12. Li X, Qin Y, Liu R (2012) Study on concentration of aqueous sulfuric acid solution by multiple-effect membrane distillation. Desalination 307:34–41. https://doi.org/10.1016/j.desal.2012.08.023

    Article  Google Scholar 

  13. He WF, Han D, Yue C (2015) A parametric study of a humidification dehumidification (HDH) desalination system using low grade heat sources. Energy Conv Manag 105:929–937. https://doi.org/10.1016/j.enconman.2015.08.056

    Article  Google Scholar 

  14. Kansha Y, Kishimoto A, Tsutsumi A (2012) Application of the self-heat recuperation technology to crude oil distillation. Appl Therm Eng 43(16):153–157. https://doi.org/10.1016/j.applthermaleng.2011.10.022

    Article  Google Scholar 

  15. Si Z, Han D, Song Y (2019) Experimental investigation on a combined system of vacuum membrane distillation and mechanical vapor recompression. Chem Eng Process 139:172–182. https://doi.org/10.1016/j.cep.2019.04.007

    Article  Google Scholar 

  16. Han D, He WF, Yue C (2014) Analysis of energy saving for ammonium sulfate solution processing with self-heat recuperation principle. Appl Therm Eng 73:641–649. https://doi.org/10.1016/j.applthermaleng.2014.08.026

    Article  Google Scholar 

  17. Nguyen NC, Chen SS, Ho ST (2018) Optimising the recovery of EDTA-2Na draw solution in forward osmosis through direct contact membrane distillation. Sep Purif Technol 198:108–112. https://doi.org/10.1016/j.seppur.2017.02.001

    Article  Google Scholar 

  18. Abu-Zeid MAER, Zhang Y, Dong H (2015) A comprehensive review of vacuum membrane distillation technique. Desalination 356:1–14. https://doi.org/10.1016/j.desal.2014.10.033

    Article  Google Scholar 

  19. Kim YD, Thu K, Choi SH (2015) Solar-assisted multi-stage vacuum membrane distillation system with heat recovery unit. Desalination 367:161–171. https://doi.org/10.1016/j.desal.2015.04.003

    Article  Google Scholar 

  20. Xu J, Singh YB, Amy GL (2016) Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water. J Membr Sci 512:73–82. https://doi.org/10.1016/j.memsci.2016.04.010

    Article  Google Scholar 

  21. An B, Xu JL (2016) Investigation on a micro-pin-fin based membrane separator. Int J Heat Mass Transf 95:426–439. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.096

    Article  Google Scholar 

  22. Nafey AS, Fath HES, Mabrouk AA (2008) Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE–MVC) desalination process. Desalination 230:1–15. https://doi.org/10.1016/j.desal.2007.08.021

    Article  Google Scholar 

  23. Navarro-Amorós MA, Ruiz-Femenia R, Caballero JA (2013) A new technique for recovering energy in thermally coupled distillation using vapor recompression cycles. AIChE J 59(10):3767–3781. https://doi.org/10.1002/aic.14137

    Article  Google Scholar 

  24. Brückner S, Liu S, Miró L (2015) Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies. Appl Energy 151:157–167. https://doi.org/10.1016/j.apenergy.2015.01.147

    Article  Google Scholar 

  25. Luo H, Bildea CS, Kiss AA (2015) Novel heat-pump-assisted extractive distillation for bioethanol purification. Ind Eng Chem Res 54:2208–2213. https://doi.org/10.1021/ie504459c

    Article  Google Scholar 

  26. Olujić Ž, Sun L, De Rijke A (2006) Conceptual design of an internally heat integrated propylene-propane splitter. Energy 31:3083–3096. https://doi.org/10.1016/j.energy.2006.03.030

    Article  Google Scholar 

  27. Saffarini RB, Summers EK, Arafat HA (2012) Economic evaluation of stand-alone solar powered membrane distillation systems. Desalination 299:55–62. https://doi.org/10.1016/j.desal.2012.05.017

    Article  Google Scholar 

  28. Ai S, Wang B, Li X (2018) Numerical analysis on the performance of mechanical vapor recompression system for strong sodium chloride solution enrichment. Appl Therm Eng 137:386–394. https://doi.org/10.1016/j.applthermaleng.2018.03.104

    Article  Google Scholar 

  29. Han D, Peng T, Liang L, Xia J (2009) Experimental study on evaporative crystallization of ammonium sulfate based on mechanical vapor recompression. Chem Ind Eng Pro 28:187–189. https://doi.org/10.16085/j.issn.1000-6613.2009.s1.007 (In Chinese)

    Article  Google Scholar 

  30. Liu SW, Qi Y, Liu D, Liu YP (2001) Handbook of sulfuric acid. Southeast University Press, Nanjing (In Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Fundamental Research Funds for the Central Universities (No. NP2018107) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Han.

Additional information

Technical Editor: Jose A. R. Parise.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Z., Han, D., Gu, J. et al. Study on vacuum membrane distillation coupled with mechanical vapor recompression system for the concentration of sulfuric acid solution. J Braz. Soc. Mech. Sci. Eng. 41, 473 (2019). https://doi.org/10.1007/s40430-019-1967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1967-5

Keywords

Navigation