Skip to main content

Existence of Global Solutions for 2D Fluid–Elastic Interaction with Small Data

  • Chapter
  • First Online:
Research in Mathematics of Materials Science

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 31))

Abstract

In this chapter, we show global existence of strong solutions for a non-linear system modelling the dynamics of a linearly elastic body immersed in an incompressible viscous fluid. We consider a fixed-domain system, or geometric linearization, that corresponds to the assumption of linear elasticity. The key ingredients of the proof are an approximation argument that transfers recent results on regularity-preserving strong solutions to a weaker functional analytic setting and energy and higher order estimates that globally bound corresponding norms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Avalos, P.G. Geredeli, J.T. Webster, A linearized viscous, compressible flow-plate interaction with non-dissipative coupling. J. Math. Anal. Appl. 477(1), 334–356 (2019)

    Article  MathSciNet  Google Scholar 

  2. S. Bechtel, M. Egert, Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets. J. Fourier Anal. Appl. 25(5), 2733–2781 (2019)

    Article  MathSciNet  Google Scholar 

  3. M. Boulakia, Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid. J. Math. Fluid Mech. 9(2), 262–294 (2007)

    Article  MathSciNet  Google Scholar 

  4. M. Boulakia, S. Guerrero, T. Takahashi, Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure. Nonlinearity 32, 3548–3592 (2019)

    Article  MathSciNet  Google Scholar 

  5. D. Coutand, S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176(1), 25–102 (2005)

    Article  MathSciNet  Google Scholar 

  6. D. Coutand, S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Ration. Mech. Anal. 179(3), 303–352 (2006)

    Article  MathSciNet  Google Scholar 

  7. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 512–573 (2012)

    Article  MathSciNet  Google Scholar 

  8. C. Grandmont, M. Hillairet, Existence of global strong solutions to a beam-fluid interaction system. Arch. Ration. Mech. Anal. 220(3), 1283–1333 (2016)

    Article  MathSciNet  Google Scholar 

  9. C. Grandmont, M. Hillairet, J. Lequeurre, Existence of local strong solutions to fluid-beam and fluid-rod interaction systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(4), 1105–1149 (2019)

    Article  MathSciNet  Google Scholar 

  10. G. Grubb, V. Solonnikov, Boundary Value Problems for the Nonstationary Navier-Stokes Equations treated by Pseudo-Differential Methods. Math. Scand. 69, 217–290 (1991)

    Article  MathSciNet  Google Scholar 

  11. P. Haupt, Continuum Mechanics and Theory of Materials (Springer, Berlin, 2002)

    Book  Google Scholar 

  12. M. Ignatova, I. Kukavica, I. Lasiecka, A. Tuffaha, Small data global existence for a fluid-structure model. Nonlinearity 30(2), 848–898 (2017)

    Article  MathSciNet  Google Scholar 

  13. I. Kukavica, A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem. Discrete Contin. Dyn. Syst. 32(4), 1355–1389 (2012)

    Article  MathSciNet  Google Scholar 

  14. I. Kukavica, A. Tuffaha, M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a nonflat boundary. Nonlinearity 24, 159–176 (2011)

    Article  MathSciNet  Google Scholar 

  15. I. Lasiecka, J.L. Lions, R. Triggiani, Non-homogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65, 149–192 (1986)

    MathSciNet  MATH  Google Scholar 

  16. J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications (Springer, Berlin, 1972)

    Book  Google Scholar 

  17. B. Muha, S. Čanić, Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy. Interfaces Free Bound. 17(4), 465–495 (2015)

    Article  MathSciNet  Google Scholar 

  18. J.P. Raymond, M. Vanninathan, A fluid-structure model coupling the Navier-Stokes equations and the Lamé system. J. Math. Pures Appl. 102, 546–596 (2014)

    Article  MathSciNet  Google Scholar 

  19. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland Publishing Company, Amsterdam, 1978)

    MATH  Google Scholar 

Download references

Acknowledgements

Michelle Luckas would like to thank the “Studienstiftung des deutschen Volkes” for academic and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Luckas .

Editor information

Editors and Affiliations

Appendix

Appendix

The Appendix contains the proof of several auxiliary estimates and an approximation argument.

1.1 Definition of Spaces and Auxiliary Estimates

Given a Banach space X, T > 0 and 0 < s < 1, for \(f\in \operatorname {\mathrm {L}}^{2}(0,T;X)\), we define

$$\displaystyle \begin{aligned} \left[f\right]_{s,(0,T),X}:=\left(\int_{0}^{T}\int_{0}^{T}\frac{\Vert f(t_{1},\cdot)-f(t_{2},\cdot)\Vert_{X}^{2}}{\vert t_{1}-t_{2}\vert^{2s+1}}\,\mbox{d}t_{1}\mbox{d}t_{2}\right)^{1/2}. \end{aligned}$$

We denote by \( \operatorname {\mathrm {H}}^{s}(0,T;X)\) the Sobolev–Slobodeckii spaces with norms

$$\displaystyle \begin{aligned} \begin{array}{rcl} \Vert f\Vert_{\operatorname{\mathrm{H}}^{s}(0,T;X)} & :=\begin{cases} \left(\Vert f\Vert_{\operatorname{\mathrm{L}}^{2}(0,T;X)}^{2}+\left[f\right]_{s,(0,T),X}^{2}\right)^{1/2} &\displaystyle \text{if }0<s<1,\\ \left(\Vert f\Vert_{\operatorname{\mathrm{H}}^{1}(0,T;X)}^{2}+\left[\dot{f}\right]_{s,(0,T),X}^{2}\right)^{1/2} & \text{if }1<s<2. \end{cases}\\ \end{array} \end{aligned} $$

Lemma 2 ([4, Corollary A.3])

Let \(\frac {1}{2}<\sigma \leq 1\) and 0 < s < σ. Then, there exists a constant C > 0 independent of T such that

$$\displaystyle \begin{aligned} \Vert f\Vert_{\operatorname{\mathrm{H}}^{s}(0,T;X)}\leq CT^{\sigma-s}\Vert f\Vert_{\operatorname{\mathrm{H}}^{\sigma}(0,T;X)} \end{aligned}$$

holds for all \(f\in \operatorname {\mathrm {H}}^{\sigma }(0,T;X)\) with f(0, ⋅) = 0.

For general \(f\in \operatorname {\mathrm {H}}^{\sigma }(0,T;X)\), the preceding lemma implies that

$$\displaystyle \begin{aligned} \begin{array}{rcl} {} & \Vert f\Vert_{\operatorname{\mathrm{H}}^{s}(0,T;X)} &\displaystyle \leq\Vert f-f(0,\cdot)\Vert_{\operatorname{\mathrm{H}}^{s}(0,T;X)}+\Vert f(0,\cdot)\Vert_{\operatorname{\mathrm{H}}^{s}(0,T;X)} \\ & &\displaystyle \leq CT^{\sigma-s}\Vert f-f(0,\cdot)\Vert_{\operatorname{\mathrm{H}}^{\sigma}(0,T;X)}+T^{1/2}\Vert f(0,\cdot)\Vert_{X}\\ & &\displaystyle \leq CT^{\sigma-s}\Vert f\Vert_{\operatorname{\mathrm{H}}^{\sigma}(0,T;X)}+\left(CT^{1/2+\sigma-s}+T^{1/2}\right)\Vert f(0,\cdot)\Vert_{X}. \end{array} \end{aligned} $$
(A.1)

Lemma 3 ([4, Lemma A.5])

  1. (a)

    Let 0 ≤ s ≤ 1, σ 1, σ 2 ≥ 0, and set σ := sσ 1 + (1 − s)σ 2 . Then,

    $$\displaystyle \begin{aligned} \operatorname{\mathrm{H}}^1(\operatorname{\mathrm{H}}^{\sigma_1}(\Omega_{\mathrm F})) \cap \operatorname{\mathrm{L}}^2(\operatorname{\mathrm{H}}^{\sigma_2}(\Omega_{\mathrm F})) \hookrightarrow \operatorname{\mathrm{H}}^s(\operatorname{\mathrm{H}}^{\sigma}(\Omega_{\mathrm F})), \end{aligned}$$

    and there exists a constant C > 0 independent of T such that

    $$\displaystyle \begin{aligned} \Vert v \Vert_{\operatorname{\mathrm{H}}^s(\operatorname{\mathrm{H}}^{\sigma}(\Omega_{\mathrm F}))} \leq C \Vert v \Vert_{\operatorname{\mathrm{H}}^1(\operatorname{\mathrm{H}}^{\sigma_1}(\Omega_{\mathrm F}))}^s\Vert v \Vert_{\operatorname{\mathrm{L}}^2(\operatorname{\mathrm{H}}^{\sigma_2}(\Omega_{\mathrm F}))}^{1-s} \end{aligned}$$

    for all \(v \in \operatorname {\mathrm {H}}^1( \operatorname {\mathrm {H}}^{\sigma _1}(\Omega _{\mathrm F})) \cap \operatorname {\mathrm {L}}^2( \operatorname {\mathrm {H}}^{\sigma _2}(\Omega _{\mathrm F}))\).

  2. (b)

    Let 1 ≤ s ≤ 2, σ 1, σ 2 ≥ 0, and set σ := (s − 1)σ 1 + (2 − s)σ 2 . Then,

    $$\displaystyle \begin{aligned} \operatorname{\mathrm{H}}^2(\operatorname{\mathrm{H}}^{\sigma_1}(\Omega_{\mathrm F})) \cap \operatorname{\mathrm{H}}^1(\operatorname{\mathrm{H}}^{\sigma_2}(\Omega_{\mathrm F})) \hookrightarrow \operatorname{\mathrm{H}}^s(\operatorname{\mathrm{H}}^{\sigma}(\Omega_{\mathrm F})), \end{aligned}$$

    and there exists a constant C > 0 independent of T such that

    $$\displaystyle \begin{aligned} \Vert v \Vert_{\operatorname{\mathrm{H}}^s(\operatorname{\mathrm{H}}^{\sigma}(\Omega_{\mathrm F}))} \leq C \Vert v \Vert_{\operatorname{\mathrm{H}}^2(\operatorname{\mathrm{H}}^{\sigma_1}(\Omega_{\mathrm F}))}^s\Vert v \Vert_{\operatorname{\mathrm{H}}^1(\operatorname{\mathrm{H}}^{\sigma_2}(\Omega_{\mathrm F}))}^{1-s} \end{aligned}$$

    for all \(v \in \operatorname {\mathrm {H}}^2( \operatorname {\mathrm {H}}^{\sigma _1}(\Omega _{\mathrm F})) \cap \operatorname {\mathrm {H}}^1( \operatorname {\mathrm {H}}^{\sigma _2}(\Omega _{\mathrm F}))\).

We recall some Sobolev embeddings on the interval (0, T) to clarify the dependence of the appearing constants on the interval length T > 0.

Lemma 4

  1. (a)

    Let s ∈ (0, 1∕2), and set \(q:= \frac {2}{1-2s}\) . Then, \( \operatorname {\mathrm {H}}^s(0,T) \hookrightarrow \operatorname {\mathrm {L}}^q(0,T)\) , and there exists a constant C > 0 independent of T such that

    $$\displaystyle \begin{aligned} \Vert f \Vert_{\operatorname{\mathrm{L}}^q(0,T)} \leq C\left(T^{-s} \Vert f \Vert_{\operatorname{\mathrm{L}}^2(0,T)} + \Vert f \Vert_{\operatorname{\mathrm{H}}^s(0,T)}\right) \end{aligned}$$

    holds for all \(f \in \operatorname {\mathrm {H}}^s(0,T)\).

  2. (b)

    Let s ∈ (1∕2, 1). Then, \( \operatorname {\mathrm {H}}^s(0,T) \hookrightarrow \operatorname {\mathrm {C}}^0(0,T)\) , and there exists a constant C > 0 independent of T such that

    $$\displaystyle \begin{aligned} \Vert f \Vert_{\operatorname{\mathrm{C}}^0(0,T)} \leq C\left(T^{-1/2} \Vert f \Vert_{\operatorname{\mathrm{L}}^2(0,T)} +T^{s-1/2} \Vert f \Vert_{\operatorname{\mathrm{H}}^s(0,T)}\right) \end{aligned}$$

    holds for all \(f \in \operatorname {\mathrm {H}}^s(0,T)\).

Proof

After rescaling a given function \(f \in \operatorname {\mathrm {H}}^s(0,T)\) to

the estimates in (a) and (b) can be shown to follow from the corresponding embeddings on the interval (0, 1), cf. [7, Theorem 5.4], [7, Theorem 6.7] and [7, Theorem 8.2]. □

In the sequel, we will often use an estimate obtained by combining (A.1) and Lemma 4 (a). To avoid repetition and to shorten the following proofs, we will now once explain this procedure in detail.

Let s ∈ (0, 1∕2), σ ∈ (1∕2, 1) and \(f \in \operatorname {\mathrm {H}}^{\sigma }(0,T;X)\) for some Banach space X. Then, for \(q:=\frac {2}{1-2s}\), Lemma 4 (a) implies that

$$\displaystyle \begin{aligned} \left\Vert \Vert f \Vert_X \right\Vert {}_{\operatorname{\mathrm{L}}^q(0,T)} \leq C\left(T^{-s}\left\Vert \Vert f \Vert_X \right\Vert {}_{\operatorname{\mathrm{L}}^2(0,T)} + \left\Vert \Vert f \Vert_X \right\Vert {}_{\operatorname{\mathrm{H}}^s(0,T)} \right). \end{aligned}$$

Now, we apply (A.1) to both terms on the right-hand side to obtain

$$\displaystyle \begin{aligned} T^{-s} \left\Vert \Vert f \Vert_X \right\Vert {}_{\operatorname{\mathrm{L}}^2(0,T)} \leq C\left( T^{\sigma-s} \Vert f \Vert_{\operatorname{\mathrm{H}}^{\sigma}(0,T;X)} + (T^{1/2+\sigma-s} + T^{1/2 -s}) \Vert f(0) \Vert_{X}\right) \end{aligned}$$

and

$$\displaystyle \begin{aligned} \left\Vert \Vert f \Vert_X \right\Vert {}_{\operatorname{\mathrm{H}}^s(0,T)} \leq C\left( T^{\sigma-s} \Vert f \Vert_{\operatorname{\mathrm{H}}^{\sigma}(0,T;X)} + (T^{1/2+\sigma-s} + T^{1/2}) \Vert f(0) \Vert_{X}\right). \end{aligned}$$

Note that every appearing exponent of T is positive. Consequently, we can choose α > 0 such that

$$\displaystyle \begin{aligned} \left\Vert \Vert f \Vert_X \right\Vert {}_{\operatorname{\mathrm{L}}^q(0,T)} \leq CT^{\alpha} \left( \Vert f \Vert_{\operatorname{\mathrm{H}}^{\sigma}(0,T;X)} + \Vert f(0) \Vert_{X}\right). \end{aligned} $$
(A.2)

1.2 Estimates on (u ⋅∇)u

We provide estimates on the non-linear term u ⋅∇u in some detail as the choice of norms for our arguments is special and the time dependence of embedding constants is non-trivial.

Lemma 5

Let u, v  X T.

  1. (a)

    Then,

    $$\displaystyle \begin{aligned} (u\cdot \nabla) u \in \operatorname{\mathrm{L}}^2(\operatorname{\mathrm{H}}^{3/4}(\Omega_{\mathrm F}))\cap \operatorname{\mathrm{H}}^1(\operatorname{\mathrm{H}}^{-1/4}(\Omega_{\mathrm F})). \end{aligned}$$
  2. (b)

    There exist some C, α > 0 such that

Proof

  1. (a)

    To show \((u\cdot \nabla ) u \in \operatorname {\mathrm {L}}^2( \operatorname {\mathrm {H}}^{3/4}(\Omega _{\mathrm F}))\), first we use interpolation to estimate

    $$\displaystyle \begin{aligned} \begin{array}{rcl} & &\displaystyle \Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{H}}^{3/4}(\Omega_{\mathrm F})} \\ & \leq \, &\displaystyle C \Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{H}}^1(\Omega_{\mathrm F})}^{3/4}\Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{1/4} \\ & \leq \, &\displaystyle C \Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})} +C \Vert \vert \nabla u\vert \vert \nabla u \vert\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{3/4}\Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{1/4} \\ & &\displaystyle +C \Vert \vert u\vert \vert \nabla^2 u \vert\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{3/4}\Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{1/4}. \end{array} \end{aligned} $$

    Now, Hölder’s inequality together with the embeddings \( \operatorname {\mathrm {H}}^{1/2}(\Omega _{\mathrm F})\hookrightarrow \operatorname {\mathrm {L}}^4(\Omega _{\mathrm F}) \) and \( \operatorname {\mathrm {H}}^{9/8}(\Omega _{\mathrm F})\hookrightarrow \operatorname {\mathrm {L}}^{\infty }(\Omega _{\mathrm F}) \) and interpolation yields

    $$\displaystyle \begin{aligned} \begin{array}{rcl} & &\displaystyle \Vert \vert \nabla u\vert \vert \nabla u \vert\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{3/4}\Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{1/4} +C \Vert \vert u\vert \vert \nabla^2 u \vert\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{3/4}\Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{1/4} \\ & \leq \, &\displaystyle C \Vert \nabla u \Vert_{\operatorname{\mathrm{L}}^4(\Omega_{\mathrm F})}^{3/2}\Vert u \Vert_{\operatorname{\mathrm{L}}^4(\Omega_{\mathrm F})}^{1/4} \Vert \nabla u\Vert_{\operatorname{\mathrm{L}}^4(\Omega_{\mathrm F})}^{1/4} \\ & &\displaystyle +C \Vert u \Vert_{\operatorname{\mathrm{L}}^{\infty}(\Omega_{\mathrm F})}^{3/4}\Vert \nabla^2 u \Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{3/4}\Vert u \Vert_{\operatorname{\mathrm{L}}^4(\Omega_{\mathrm F})}^{1/4} \Vert \nabla u\Vert_{\operatorname{\mathrm{L}}^4(\Omega_{\mathrm F})}^{1/4} \\ & \leq \, &\displaystyle C \Vert u \Vert_{\operatorname{\mathrm{H}}^{3/2}(\Omega_{\mathrm F})}^{7/4}\Vert u \Vert_{\operatorname{\mathrm{H}}^{1/2}(\Omega_{\mathrm F})}^{1/4}\\ & &\displaystyle + C \Vert u \Vert_{\operatorname{\mathrm{H}}^{9/8}(\Omega_{\mathrm F})}^{3/4} \Vert u \Vert_{\operatorname{\mathrm{H}}^2(\Omega_{\mathrm F})}^{3/4}\Vert u \Vert_{\operatorname{\mathrm{H}}^{1/2}(\Omega_{\mathrm F})}^{1/4}\Vert u \Vert_{\operatorname{\mathrm{H}}^{3/2}(\Omega_{\mathrm F})}^{1/4} \\ & \leq \, &\displaystyle C \Vert u \Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{1/8}\Vert u \Vert_{\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm F})}\Vert u \Vert_{\operatorname{\mathrm{H}}^2(\Omega_{\mathrm F})}^{7/8} + C \Vert u \Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{1/8}\Vert u \Vert_{\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm F})}^{29/32}\Vert u \Vert_{\operatorname{\mathrm{H}}^2(\Omega_{\mathrm F})}^{31/32} \\ & \leq \, &\displaystyle C \Vert u \Vert_{\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm F})}\Vert u \Vert_{\operatorname{\mathrm{H}}^2(\Omega_{\mathrm F})}. \end{array} \end{aligned} $$

    Similarly, we can estimate

    $$\displaystyle \begin{aligned} \Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})} \leq C \Vert u \Vert_{\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm F})}\Vert u \Vert_{\operatorname{\mathrm{H}}^2(\Omega_{\mathrm F})} . \end{aligned}$$

    From these estimates follows by applying Hölder’s inequality on (0, T) and using the embedding \( \operatorname {\mathrm {H}}^{1}(0,T)\hookrightarrow \operatorname {\mathrm {L}}^{\infty }(0,T) \) that

    $$\displaystyle \begin{aligned} \begin{array}{rcl} \Vert (u \cdot \nabla)u\Vert_{\operatorname{\mathrm{L}}^2(\operatorname{\mathrm{H}}^{3/4}(\Omega_{\mathrm F}))} & \leq &\displaystyle \, C \left \Vert \Vert u \Vert_{\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm F})}\Vert u \Vert_{\operatorname{\mathrm{H}}^2(\Omega_{\mathrm F})}\right\Vert {}_{\operatorname{\mathrm{L}}^2(0,T)} \\ & \leq &\displaystyle \, C\left\Vert \Vert u \Vert_{\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm F})}\right \Vert_{\operatorname{\mathrm{L}}^{\infty}(0,T)}\left\Vert\Vert u \Vert_{\operatorname{\mathrm{H}}^2(\Omega_{\mathrm F})}\right \Vert_{\operatorname{\mathrm{L}}^{2}(0,T)}\\ & \leq &\displaystyle \, C(T) \Vert u \Vert_{\operatorname{\mathrm{L}}^2(\operatorname{\mathrm{H}}^2(\Omega_{\mathrm F}))\cap \operatorname{\mathrm{H}}^{1}(\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm F}))}^2 \\ & \leq &\displaystyle \, C(T) \Vert u \Vert_{X_T}^2 \end{array} \end{aligned} $$

    and hence \((u\cdot \nabla ) u \in \operatorname {\mathrm {L}}^2( \operatorname {\mathrm {H}}^{3/4}(\Omega _{\mathrm F}))\). To show \((u\cdot \nabla ) u \in \operatorname {\mathrm {H}}^1( \operatorname {\mathrm {H}}^{-1/4}(\Omega _{\mathrm F}))\), note that

    $$\displaystyle \begin{aligned} \operatorname{\mathrm{H}}^{-1/4}(\Omega_{\mathrm F})=(\operatorname{\mathrm{H}}^{1/4}(\Omega_{\mathrm F}))^* \end{aligned}$$

    by [19, Theorem 4.8.2], [2, Theorem 1.1]. Now, for \(v \in \operatorname {\mathrm {H}}^{1/4}(\Omega _{\mathrm F})\), we use Hölder’s inequality together with the embeddings \( \operatorname {\mathrm {H}}^{1/2}(\Omega _{\mathrm F})\hookrightarrow \operatorname {\mathrm {L}}^4(\Omega _{\mathrm F}) \), \( \operatorname {\mathrm {H}}^{1/4}(\Omega _{\mathrm F})\hookrightarrow \operatorname {\mathrm {L}}^{8/3}(\Omega _{\mathrm F})\) and \( \operatorname {\mathrm {H}}^{3/4}(\Omega _{\mathrm F})\hookrightarrow \operatorname {\mathrm {L}}^{8}(\Omega _{\mathrm F})\) to estimate

    $$\displaystyle \begin{aligned} \begin{array}{rcl} & &\displaystyle \int_{\Omega_{\mathrm F}} \left( (\dot{u} \cdot \nabla) u + (u \cdot \nabla) \dot{u} \right)\cdot v \, \mathrm{d} y \\ & \leq \, &\displaystyle C \left( \Vert \dot{u} \Vert_{\operatorname{\mathrm{L}}^4(\Omega_{\mathrm F})}\Vert \nabla u \Vert_{\operatorname{\mathrm{L}}^{8/3}(\Omega_{\mathrm F})} + \Vert u \Vert_{\operatorname{\mathrm{L}}^8(\Omega_{\mathrm F})} \Vert \nabla \dot{u} \Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})} \right)\Vert v \Vert_{\operatorname{\mathrm{L}}^{8/3}(\Omega_{\mathrm F})} \\ & \leq \, &\displaystyle C \left( \Vert \dot{u} \Vert_{\operatorname{\mathrm{H}}^{1/2}(\Omega_{\mathrm F})}\Vert \nabla u \Vert_{\operatorname{\mathrm{H}}^{1/4}(\Omega_{\mathrm F})} + \Vert u \Vert_{\operatorname{\mathrm{H}}^{3/4}(\Omega_{\mathrm F})} \Vert \nabla \dot{u} \Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})} \right)\Vert v \Vert_{\operatorname{\mathrm{H}}^{1/4}(\Omega_{\mathrm F})} \\ & \leq \, &\displaystyle C \left( \Vert \dot{u} \Vert_{\operatorname{\mathrm{H}}^{1/2}(\Omega_{\mathrm F})}\Vert u \Vert_{\operatorname{\mathrm{H}}^{5/4}(\Omega_{\mathrm F})} + \Vert u \Vert_{\operatorname{\mathrm{H}}^{3/4}(\Omega_{\mathrm F})} \Vert \dot{u} \Vert_{\operatorname{\mathrm{H}}^1(\Omega_{\mathrm F})} \right) \Vert v \Vert_{\operatorname{\mathrm{H}}^{1/4}(\Omega_{\mathrm F})}. \end{array} \end{aligned} $$

    By applying Hölder’s inequality on (0,T) and the embeddings \( \operatorname {\mathrm {H}}^{1/4}(0,T)\hookrightarrow \operatorname {\mathrm {L}}^{4}(0,T)\) and \( \operatorname {\mathrm {H}}^{3/4}(0,T)\hookrightarrow \operatorname {\mathrm {L}}^{\infty }(0,T)\) together with Lemma 3, we obtain

    Similarly, we can also estimate

    $$\displaystyle \begin{aligned} \left\Vert \int_{\Omega_{\mathrm F}} (u \cdot \nabla) u \cdot v \, \mathrm{d} y \right\Vert {}_{\operatorname{\mathrm{L}}^2(0,T)} \leq C (T) \Vert u \Vert_{X_T}^2\Vert v \Vert_{\operatorname{\mathrm{H}}^{1/4}(\Omega_{\mathrm F})} , \end{aligned}$$

    so we conclude that \((u\cdot \nabla ) u \in \operatorname {\mathrm {H}}^1( \operatorname {\mathrm {H}}^{-1/4}(\Omega _{\mathrm F}))\).

  2. (b)

    We use again Hölder’s inequality on ΩF, the embedding \( \operatorname {\mathrm {H}}^{3/2}(\Omega _{\mathrm F}) \hookrightarrow \operatorname {\mathrm {L}}^{\infty }(\Omega _{\mathrm F})\) and interpolation to estimate

    $$\displaystyle \begin{aligned} \begin{array}{rcl} & \Vert( u \cdot \nabla) v \Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})} &\displaystyle \leq C \Vert u \Vert_{\operatorname{\mathrm{L}}^{\infty}(\Omega_{\mathrm F})} \Vert \nabla v \Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})} \\ & &\displaystyle \leq C \Vert u \Vert_{\operatorname{\mathrm{H}}^{3/2}(\Omega_{\mathrm F})} \Vert v \Vert_{\operatorname{\mathrm{H}}^1(\Omega_{\mathrm F})} \\ & &\displaystyle \leq C \Vert u \Vert_{\operatorname{\mathrm{H}}^2(\Omega_{\mathrm F})}^{1/2} \Vert u \Vert_{\operatorname{\mathrm{H}}^1(\Omega_{\mathrm F})}^{1/2} \Vert v \Vert_{\operatorname{\mathrm{H}}^1(\Omega_{\mathrm F})} . \end{array} \end{aligned} $$

    Now, Hölder’s inequality on (0, T) together with (A.2) for q = 6, s = 1∕3 and σ = 1 implies

    Similarly, we obtain together with \( \operatorname {\mathrm {H}}^{1/2}(\Omega _{\mathrm F}) \hookrightarrow \operatorname {\mathrm {L}}^4(\Omega _{\mathrm F})\) that

    $$\displaystyle \begin{aligned} \begin{array}{rcl} \Vert( u \cdot \nabla) v \Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})} & \leq&\displaystyle C \Vert u \Vert_{\operatorname{\mathrm{L}}^{4}(\Omega_{\mathrm F})} \Vert \nabla v \Vert_{\operatorname{\mathrm{L}}^{4}(\Omega_{\mathrm F})} \\ & \leq &\displaystyle C \Vert u \Vert_{\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm F})} \Vert v \Vert_{\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm F})}^{1/2} \Vert v \Vert_{\operatorname{\mathrm{H}}^{2}(\Omega_{\mathrm F})}^{1/2} \end{array} \end{aligned} $$

    and hence

Lemma 6

Let u, v, w  X T . Then, there exists some α > 0 such that

Proof

For the second term, we use Hölder’s inequality, the embedding \( \operatorname {\mathrm {H}}^{1/2}(\Omega _{\mathrm F}) \hookrightarrow \operatorname {\mathrm {L}}^4(\Omega _{\mathrm F})\) and interpolation to estimate

$$\displaystyle \begin{aligned} \begin{array}{rcl} & &\displaystyle \int_0^t \int_{\Omega_{\mathrm F}} \vert (\dot{u} \cdot \nabla) v \cdot \dot{w} \vert \, \mathrm{d} y \mathrm{d} s \\ & \leq &\displaystyle C \int_0^t \Vert \dot{u} \Vert_{\operatorname{\mathrm{L}}^4(\Omega_{\mathrm F})} \Vert \nabla v \Vert_{\operatorname{\mathrm{L}}^{2}(\Omega_{\mathrm F})} \Vert \dot{w} \Vert_{\operatorname{\mathrm{L}}^4(\Omega_{\mathrm F})} \, \mathrm{d} s \\ & \leq &\displaystyle C \int_0^t \Vert \dot{u} \Vert_{\operatorname{\mathrm{H}}^{1/2}(\Omega_{\mathrm F})} \Vert \nabla v \Vert_{\operatorname{\mathrm{L}}^{2}(\Omega_{\mathrm F})} \Vert \dot{w} \Vert_{\operatorname{\mathrm{H}}^{1/2}(\Omega_{\mathrm F})} \, \mathrm{d} s \\ & \leq &\displaystyle C \int_0^t \Vert \dot{u} \Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F})}^{1/2} \Vert \dot{u} \Vert_{\operatorname{\mathrm{H}}^1(\Omega_{\mathrm F})}^{1/2} \Vert v \Vert_{\operatorname{\mathrm{H}}^1(\Omega_{\mathrm F})} \Vert \dot{w} \Vert_{\operatorname{\mathrm{H}}^1(\Omega_{\mathrm F})} \, \mathrm{d} s . \end{array} \end{aligned} $$

Now, we apply again Hölder’s inequality on (0, T) together with the embedding \( \operatorname {\mathrm {C}}^0(0,T) \hookrightarrow \operatorname {\mathrm {L}}^4(0,T)\) and (A.2) for q = 8, s = 3∕8 and σ = 1 and obtain

We can estimate the first term similarly. For the last term, we make use of the same tools to estimate

1.3 Approximation of Data

We define

$$\displaystyle \begin{aligned} A:= \operatorname{\mathrm{H}}^{2}(\Omega_{\mathrm F}) \times \operatorname{\mathrm{H}}^1(\Omega_{\mathrm F}) \times \operatorname{\mathrm{H}}^1(\Omega_{\mathrm F}) \times \operatorname{\mathrm{H}}^{2}(\Omega_{\mathrm S}) \times \operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm S}) \times \operatorname{\mathrm{L}}^2(\Omega_{\mathrm S}) \end{aligned}$$

and

$$\displaystyle \begin{aligned} \begin{array}{rcl} \tilde{A} & := &\displaystyle \operatorname{\mathrm{H}}^{5/2+1/16}(\Omega_{\mathrm F}) \times \operatorname{\mathrm{H}}^1(\Omega_{\mathrm F}) \times \operatorname{\mathrm{H}}^{3/2+1/16}(\Omega_{\mathrm F}) \\ & &\displaystyle \times \operatorname{\mathrm{H}}^{5/2+1/16}(\Omega_{\mathrm S}) \times \operatorname{\mathrm{H}}^{3/2+1/16}(\Omega_{\mathrm S}) \times \operatorname{\mathrm{H}}^{1/2+1/16}(\Omega_{\mathrm S}). \end{array} \end{aligned} $$

Now, we want to show the following approximation result:

Lemma 7

For given

$$\displaystyle \begin{aligned} \begin{array}{rcl} d& :=&\displaystyle (u_0,u_1, p_0, \xi_0, \xi_1, \xi_2, f) \\ & \in &\displaystyle A \times\left( \operatorname{\mathrm{L}}^2(\operatorname{\mathrm{H}}^{1/2+1/16}(\Omega_{\mathrm F}))\cap \operatorname{\mathrm{H}}^1(\operatorname{\mathrm{H}}^{-1/2+1/16}(\Omega_{\mathrm F})) \right) \end{array} \end{aligned} $$

satisfying (4), there exists a sequence

$$\displaystyle \begin{aligned} d_n:= (u_0^n,u_1^n, p_0^n, \xi_0^n, \xi_1^n, \xi_2^n, f^n) \in \tilde{A} \times \left(\operatorname{\mathrm{C}}^\infty(\operatorname{\mathrm{H}}^{1/2+1/16}(\Omega_{\mathrm F})) \right), \end{aligned}$$

which satisfies (4) for all \(n \in \mathbb {N}\) and which converges to d in

$$\displaystyle \begin{aligned} A \times \left( \operatorname{\mathrm{L}}^2(\operatorname{\mathrm{H}}^{1/2+1/16}(\Omega_{\mathrm F}))\cap \operatorname{\mathrm{H}}^1(\operatorname{\mathrm{H}}^{-1/2+1/16}(\Omega_{\mathrm F})) \right). \end{aligned}$$

Proof

To construct such a sequence, we proceed in the following steps:

  1. (1)

    As \(u_1 \in \operatorname {\mathrm {H}}^1(\Omega _{\mathrm F})\) with \( \operatorname {{\mathrm {div}}}(u_1)=0\) in ΩF and u 1| Ω = 0 is already satisfied, we set \(u_1^n:=u_1\) for all \(n \in \mathbb {N}\).

  2. (2)

    Since \(\xi _2 \in \operatorname {\mathrm {L}}^2(\Omega _{\mathrm S})\) and \( \operatorname {\mathrm {C}}_0^{\infty }(\Omega _{\mathrm S})\) is dense in \( \operatorname {\mathrm {L}}^2(\Omega _{\mathrm S})\), we can find a sequence \((\hat {\xi }_2^n) \subset \operatorname {\mathrm {C}}_0^{\infty }(\Omega _{\mathrm S})\) such that \(\lim _{n \to \infty } \hat {\xi }_2^n=\xi _2\) in \( \operatorname {\mathrm {L}}^2(\Omega _{\mathrm S})\). To modify this sequence such that it satisfies the compatibility condition on ΩS, we first define the sets

    $$\displaystyle \begin{aligned} (\partial\Omega_{\mathrm S})^n:=\left\{y \in \Omega_{\mathrm S}: \text{dist}(y, \partial\Omega_{\mathrm S}) < \frac{1}{2^n} \right\} \end{aligned}$$

    for \(n \in \mathbb {N}\). Then, we can find a sequence \((\varphi ^n) \subset \operatorname {\mathrm {C}}^{\infty }(\Omega _{\mathrm S})\) such that

    $$\displaystyle \begin{aligned} \begin{array}{rcl} \varphi^n(y)= \begin{cases} 1 & \text{if } y \in (\partial\Omega_{\mathrm S})^{n+1}, \\ 0 & \text{if } y \in \Omega_{\mathrm S} \setminus (\partial\Omega_{\mathrm S})^{n}. \end{cases} \end{array} \end{aligned} $$

    Now, let \(u_1^E \in \operatorname {\mathrm {H}}^1(\Omega )\) denote an extension of u 1 to Ω, and set

    $$\displaystyle \begin{aligned} \xi_2^n:=\hat{\xi}_2^n + \varphi^n u_1^E \in \operatorname{\mathrm{H}}^1(\Omega_{\mathrm S}). \end{aligned}$$

    Then, \(\xi _2^n \vert _{\partial \Omega _{\mathrm S}} = u_1 \vert _{\partial \Omega _{\mathrm S}} \) and

    $$\displaystyle \begin{aligned} \Vert \varphi^n u_1^E\Vert_{\operatorname{\mathrm{L}}^2(\Omega_{\mathrm S})} \leq C \Vert \varphi^n \Vert_{\operatorname{\mathrm{L}}^3(\Omega_{\mathrm S})} \Vert u_1^E \Vert_{\operatorname{\mathrm{L}}^6(\Omega_{\mathrm S})} \leq C \vert (\partial\Omega_{\mathrm S})^n \vert^{1/3} \Vert u_1^E \Vert_{\operatorname{\mathrm{H}}^{1}(\Omega_{\mathrm S})} \to 0, \end{aligned}$$

    so we get that \(\lim _{n \to \infty } \xi _2^n=\xi _2\) in \( \operatorname {\mathrm {L}}^2(\Omega _{\mathrm S})\).

  3. (3)

    Since \(\xi _0\vert _{\partial \Omega _{\mathrm S}} \in \operatorname {\mathrm {H}}^{3/2}(\partial \Omega _{\mathrm S})\), we can choose a sequence \((g^n)\subset \operatorname {\mathrm {H}}^{2+1/16}(\partial \Omega _{\mathrm S})\) such that \(\lim _{n \to \infty } g^n = \xi _0\vert _{\partial \Omega _{\mathrm S}}\) in \( \operatorname {\mathrm {H}}^{3/2}(\partial \Omega _{\mathrm S})\). Because of

    $$\displaystyle \begin{aligned} \operatorname{{\mathrm{div}}} (\Sigma(\xi_0))=\xi_2, \end{aligned}$$

    we can construct a sequence \((\xi _0^n) \subset \operatorname {\mathrm {H}}^{5/2+1/16}(\Omega _{\mathrm S})\) which satisfies \(\lim _{n \to \infty } \xi _0^n = \xi _0\) in \( \operatorname {\mathrm {H}}^2(\Omega _{\mathrm S})\) by solving the Dirichlet problem

    $$\displaystyle \begin{aligned} \begin{cases} \begin{array}{rcll} \operatorname{{\mathrm{div}}} (\Sigma(\xi_0^n))&=&\xi_2^n & \text{in } \Omega_{\mathrm S} ,\\ \xi_0^n &=& g^n &\text{on } \partial\Omega_{\mathrm S}, \end{array} \end{cases} \end{aligned}$$

    and using Theorem 4 for both s = 3∕2 + 1∕16 and s = 1.

  4. (4)

    Since \( \operatorname {\mathrm {H}}^{1/2+1/16}(\Omega _{\mathrm F}) \hookrightarrow \operatorname {\mathrm {H}}^{-1/2+1/16}(\Omega _{\mathrm F})\) is dense, [16, Theorem 2.1] implies that we find a sequence \((\tilde {f}^n) \subset \operatorname {\mathrm {C}}^{\infty }( \operatorname {\mathrm {H}}^{1/2+1/16}(\Omega _{\mathrm F}))\) such that \(\lim _{n \to \infty } \tilde {f}^n =f\) in \( \operatorname {\mathrm {L}}^2( \operatorname {\mathrm {H}}^{1/2+1/16}(\Omega _{\mathrm F}))\cap \operatorname {\mathrm {H}}^1( \operatorname {\mathrm {H}}^{-1/2+1/16}(\Omega _{\mathrm F}))\). Since d solves

    $$\displaystyle \begin{aligned} \begin{cases} \begin{array}{rcll} \operatorname{{\mathrm{div}}}(\sigma(u_0,p_0))&=& u_1-f(0) &\text{in } \Omega_{\mathrm F}, \\ \operatorname{{\mathrm{div}}}(u_0)&=&0 &\text{in } \Omega_{\mathrm F} ,\\ \sigma(u_0,p_0)n &=& \Sigma(\xi_0)n &\text{on } \partial\Omega_{\mathrm S}, \\ u_0 &=&0 &\text{on } \partial\Omega, \end{array} \end{cases} \end{aligned}$$

    integration by parts shows that

    $$\displaystyle \begin{aligned} \int_{\Omega_{\mathrm F}} f(0) \, \mathrm{d} y - \int_{\Omega_{\mathrm F}} u_1 \, \mathrm{d} y =-\int_{\partial\Omega_{\mathrm S}} \sigma (u_0,p_0)N \, \mathrm{d} S(y) = \int_{\partial\Omega_{\mathrm S}} \Sigma (\xi_0)n \, \mathrm{d} S(y). \end{aligned}$$

    Therefore, we can modify \((\tilde {f}^n)\) by adding suitable constants to obtain a sequence \((f^n)\subset \operatorname {\mathrm {C}}^{\infty }( \operatorname {\mathrm {H}}^{1/2+1/16}(\Omega _{\mathrm F})) \) such that

    $$\displaystyle \begin{aligned} \int_{\Omega_{\mathrm F}} f^n(0) \, \mathrm{d} y = \int_{\partial\Omega_{\mathrm S}} \Sigma (\xi_0^n)n \, \mathrm{d} S(y) + \int_{\Omega_{\mathrm F}} u_1^n \, \mathrm{d} y \end{aligned} $$
    (A.3)

    and still limn f n = f in \( \operatorname {\mathrm {L}}^2( \operatorname {\mathrm {H}}^{1/2+1/16}(\Omega _{\mathrm F}))\cap \operatorname {\mathrm {H}}^1( \operatorname {\mathrm {H}}^{-1/2+1/16}(\Omega _{\mathrm F}))\). Moreover, then [16, Theorem 3.1] together with

    $$\displaystyle \begin{aligned} \left(\operatorname{\mathrm{H}}^{1/2+1/16}(\Omega_{\mathrm F}), \operatorname{\mathrm{H}}^{-1/2+1/16}(\Omega_{\mathrm F})\right)_{1/2} \hookrightarrow \operatorname{\mathrm{L}}^2(\Omega_{\mathrm F}) \end{aligned}$$

    implies that

    $$\displaystyle \begin{aligned} \Vert f- f^n \Vert_{\operatorname{\mathrm{C}}^0(\operatorname{\mathrm{L}}^2(\Omega_{\mathrm F}))}\leq C\Vert f-f^n\Vert_{\operatorname{\mathrm{L}}^2(\operatorname{\mathrm{H}}^{1/2+1/16}(\Omega_{\mathrm F}))\cap \operatorname{\mathrm{H}}^1(\operatorname{\mathrm{H}}^{-1/2+1/16}(\Omega_{\mathrm F})} \to 0, \end{aligned}$$

    so in particular limn f n(0) = f(0) in \( \operatorname {\mathrm {L}}^2(\Omega _{\mathrm F})\).

  5. (5)

    Next, we consider the Stokes problem

    $$\displaystyle \begin{aligned} \begin{cases} \begin{array}{rcll} \operatorname{{\mathrm{div}}}(\sigma(u_0^n,p_0^n))&=& u_1^n-f^n(0) &\text{in } \Omega_{\mathrm F} ,\\ \operatorname{{\mathrm{div}}}(u_0^n)&=&0 &\text{in } \Omega_{\mathrm F}, \\ \sigma(u_0^n,p_0^n)n &=& \Sigma(\xi_0^n)n &\text{on } \partial\Omega_{\mathrm S}, \\ u_0^n &=&0 &\text{on } \partial\Omega, \end{array} \end{cases} \end{aligned}$$

    for \(n \in \mathbb {N}\). Note that \(f^n \in \operatorname {\mathrm {C}}^{\infty }( \operatorname {\mathrm {H}}^{1/2+1/16}(\Omega _{\mathrm F}))\) implies \(f^n(0) \in \operatorname {\mathrm {H}}^{1/2+1/16}(\Omega _{\mathrm F})\). Because of (A.3) together with \(u_1^n \in \operatorname {\mathrm {H}}^1(\Omega _{\mathrm F})\) and \(\Sigma (\xi _0^n)n \in \operatorname {\mathrm {H}}^{1+1/16}(\partial \Omega _{\mathrm S})\), we find a sequence of solutions \((u_0^n,p_0^n) \subset \operatorname {\mathrm {H}}^{5/2+1/16}(\Omega _{\mathrm F})\times \operatorname {\mathrm {H}}^{3/2+1/16}(\Omega _{\mathrm F})\) by using Theorem 3 for s = 1∕2 + 1∕16. Since

    for s = 0, Theorem 3 implies \(\lim _{n \to \infty } u_0^n = u_0\) in \( \operatorname {\mathrm {H}}^2(\Omega _{\mathrm F})\) and \(\lim _{n \to \infty } p_0^n =p_0\) in \( \operatorname {\mathrm {H}}^1(\Omega _{\mathrm F})\).

  6. (6)

    Finally, we set \(h:= \operatorname {{\mathrm {div}}}(\Sigma (\xi _1)) \in \operatorname {\mathrm {H}}^{-1}(\Omega _{\mathrm S}))\) and consider the elliptic problem

    $$\displaystyle \begin{aligned} \begin{cases} \begin{array}{rcll} \operatorname{{\mathrm{div}}}(\Sigma(\xi_1))&=&h &\text{in } \operatorname{\mathrm{H}}^{-1}(\Omega_{\mathrm S}) ,\\ \xi_1&=&u_0 &\text{on } \partial\Omega_{\mathrm S}. \end{array} \end{cases} \end{aligned}$$

    Now, choose some sequence \((h^n) \subset \operatorname {\mathrm {L}}^2(\Omega _{\mathrm S})\) such that limn h n = h in \( \operatorname {\mathrm {H}}^{-1}(\Omega _{\mathrm S})\), and consider the elliptic problems

    $$\displaystyle \begin{aligned} \begin{cases} \begin{array}{rcll} \operatorname{{\mathrm{div}}}(\Sigma(\xi_1^n))&=&h^n &\text{in } \Omega_{\mathrm S} ,\\ \xi_1^n&=&u_0^n &\text{on } \partial\Omega_{\mathrm S}. \end{array} \end{cases} \end{aligned}$$

    Since it follows from step 5 that \((u_0^n\vert _{\partial \Omega _{\mathrm S}}) \subset \operatorname {\mathrm {H}}^{2+1/16}(\partial \Omega _{\mathrm S})\) and \(\lim _{n \to \infty } u_0^n\vert _{\partial \Omega _{\mathrm S}} = u_0\vert _{\partial \Omega _{\mathrm S}}\) in \( \operatorname {\mathrm {H}}^{3/2}(\partial \Omega _{\mathrm S})\), we can use Theorem 4 for both s = 1 and s = 0 and obtain a sequence of solutions \((\xi _1^n) \subset \operatorname {\mathrm {H}}^2(\Omega _{\mathrm S})\) such that \(\lim _{n \to \infty } \xi _1^n = \xi _1\) in \( \operatorname {\mathrm {H}}^1(\Omega _{\mathrm S})\).

Consequently, we have found a compatible sequence

$$\displaystyle \begin{aligned} (d_n):=(u_0^n,u_1^n, p_0^n, \xi_0^n, \xi_1^n, \xi_2^n, f^n) \end{aligned}$$

approximating d in

$$\displaystyle \begin{aligned} A \times \left(\operatorname{\mathrm{L}}^2(\operatorname{\mathrm{H}}^{1/2+1/16}(\Omega_{\mathrm F}))\cap \operatorname{\mathrm{H}}^1(\operatorname{\mathrm{H}}^{-1/2+1/16}(\Omega_{\mathrm F})) \right).\end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Disser, K., Luckas, M. (2022). Existence of Global Solutions for 2D Fluid–Elastic Interaction with Small Data. In: Español, M.I., Lewicka, M., Scardia, L., Schlömerkemper, A. (eds) Research in Mathematics of Materials Science. Association for Women in Mathematics Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-04496-0_9

Download citation

Publish with us

Policies and ethics