Skip to main content
Log in

Existence of Global Strong Solutions to a Beam–Fluid Interaction System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study an unsteady nonlinear fluid–structure interaction problem which is a simplified model to describe blood flow through viscoelastic arteries. We consider a Newtonian incompressible two-dimensional flow described by the Navier–Stokes equations set in an unknown domain depending on the displacement of a structure, which itself satisfies a linear viscoelastic beam equation. The fluid and the structure are fully coupled via interface conditions prescribing the continuity of the velocities at the fluid–structure interface and the action–reaction principle. We prove that strong solutions to this problem are global-in-time. We obtain, in particular that contact between the viscoelastic wall and the bottom of the fluid cavity does not occur in finite time. To our knowledge, this is the first occurrence of a no-contact result, and of the existence of strong solutions globally in time, in the frame of interactions between a viscous fluid and a deformable structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga H.: On the existence of strong solutions to a coupled fluid–structure evolution problem. J. Math. Fluid Mech. 6(1), 21–52 (2004)

  2. Bello, J. A.: \({L^r}\) regularity for the Stokes and Navier–Stokes problems. Ann. Mat. Pura Appl. 4, 170, 187–206 (1996)

  3. Boulakia M.: Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid. J. Math. Fluid Mech. 9(2), 262–294 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Boulakia M., Schwindt E., Takahashi T.: Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid. Interfaces Free Bound. 14(3), 273–306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle A., Desjardins B., Esteban M. J., Grandmont C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7(3), 368–404 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Conca C., San Martin J.-A., Tucsnak M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equ. 25(5–6), 1019–1042 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Coutand D., Shkoller S.: The interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Ration. Mech. Anal. 179(3), 303–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coutand D., Shkoller S.: Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176(1), 25–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cumsille P., Takahashi T.: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Bol. Soc. Esp. Mat. Apl. SeMA 41, 117–126 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Desjardins B., Esteban M. J.: On weak solutions for fluid–rigid structure interaction: compressible and incompressible models. Commun. Partial Differ. Equ. 25(7–8), 1399–1413 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Desjardins B., Esteban M. J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desjardins B., Esteban M. J., Grandmont C., Le Tallec P.: Weak solutions for a fluid-elastic structure interaction model. Rev. Math. Complut. 14(2), 523–538 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Formaggia L., Gerbeau J.-F., Nobile F., Quarteroni A.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7), 561–582 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Feireisl, E.: On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3(3), 419–441 (2003) (dedicated to Philippe Bénilan)

  15. Galdi, G. P.: An introduction to the mathematical theory of the Navier–Stokes equations. Springer Monographs in Mathematics. Steady-state problems, 2nd edn. Springer, New York, 2011

  16. Galdi G. P., Kyed M.: Steady flow of a Navier–Stokes liquid past an elastic body. Arch. Ration. Mech. Anal. 194(3), 849–875 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gérard-Varet D., Hillairet M.: Regularity issues in the problem of fluid structure. Arch. Ration. Mech. Anal. 195(2), 375–407 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gérard-Varet M., Hillairet M.: Computation of the drag force on a sphere close to a wall: the roughness issue. ESAIM Math. Model. Numer. Anal. 46(5), 1201–1224 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gérard-Varet, D., Hillairet, M.: Existence of weak solutions up to collisions for viscous fluid-solid systems with slip. Comm. Pure Appl. Math. 67(12), 2022–2075 (2014)

  20. Gérard-Varet, D., Hillairet, M., Wang, C.: The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow. J. Math. Pures Appl. 103(9), 1–38 (2015)

  21. Guidoboni G., Glowinski R., Cavallini N., Canić S.: Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Grandmont, C.: On an unsteady fluid-beam interaction problem. Cahiers duCeremade. 2004–2048 (2004)

  23. Grandmont C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40(2), 716–737 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grandmont C.: Existence for a three-dimensional steady state fluid–structure interaction problem. J. Math. Fluid Mech. 4(1), 76–94 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Grandmont C.: Existence et unicité de solutions d’un problème de couplage fluide–structure bidimensionnel stationnaire (French) (Existence and uniqueness for a two-dimensional steady-state fluid–structure interaction problem) C. R. Acad. Sci. Paris Sér. I Math. 326(5), 651–656 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. Grandmont C., Maday Y. Existence for an unsteady fluid–structure interaction problem. M2AN Math. Model. Numer. Anal. 34(3), 609–636 (2000)

  27. Grubb G., Solonnikov V. A.: Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69(1991), 217–290 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Hesla, T. I.: Collision of Smooth Bodies in a Viscous Fluid: A Mathematical Investigation. PhD Thesis, Minnesota (2005)

  29. Hillairet M.: Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Partial Differ. Equ. 32, 1345–1371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hillairet M., Takahashi T.: Blow up and grazing collision in viscous fluid solid interaction systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 291–313 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Hillairet M., Takahashi T.: Collisions in three-dimensional fluid structure interaction problems. SIAM J. Math. Anal. 40(6), 2451–2477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hoffmann K.-H., Starovoitov V. N.: On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9(2), 633–648 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Hoffmann K.-H., Starovoitov V. N.: Zur Bewegung einer Kugel in einer zähen Flüssigkeit (German) (On the motion of a sphere in a viscous fluid). Doc Math. 5, 15–21 (2000)

    MathSciNet  Google Scholar 

  34. Kukavica I., Tuffaha A.: Well-posedness for the compressible Navier–Stokes–Lamé system with a free interface. Nonlinearity 25(11), 3111–3137 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Judakov N. V.: The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid (Russian). Din. Splošn. Sredy Vyp. 18, 249–253 (1974)

    Google Scholar 

  36. Leal, L.G.: Advanced transport phenomena. Cambridge Series in Chemical Engineering. Fluid mechanics and convective transport processes. Cambridge University Press, Cambridge, 2007

  37. Lengeler, D., R\({\mathring{{\rm u}}}\)žicka, M.: Global weak solutions for an incompressible Newtonian fluid interacting with a linearly elastic Koiter shell. Arch. Ration. Mech. Anal. 211(1), 205–255 (2014)

  38. Lequeurre J.: Existence of strong solutions for a system coupling the Navier–Stokes equations and a damped wave equation. J. Math. Fluid Mech. 15(2), 249–271 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lequeurre J.: Existence of strong solutions to a fluid–structure system. SIAM J. Math. Anal. 43(1), 389–410 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Springer, New York, 1972

  41. Muha B., Canić S.: Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207(3), 919–968 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Quarteroni A., Tuveri M., Veneziani A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci. 2(4), 163–197 (2000)

    Article  MATH  Google Scholar 

  43. Raymond J.-P., Vanninathan M.: A fluid–structure model coupling the Navier–Stokes equations and the Lam system. J. Math. Pures Appl.(9) 102(3), 546–596 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. San Martin J.-A., Starovoitov V., Tucsnak M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161(2), 113–147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Serre, D.: Chute libre d’un solide dans un fluide visqueux incompressible. Existence (French). (Free fall of a rigid body in an incompressible viscous fluid. Existence). Jpn J. Appl. Math. 4(1), 99–110 (1987)

  46. Starovoitov, V.N.: Behavior of a rigid body in an incompressible viscous fluid near a boundary. Free boundary problems (Trento, 2002), Vol. 147. International Series of Numerical Mathematics, pp. 313–327. Birkhauser, Basel, 2004

  47. Takahashi T., Tucsnak M.: Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6(1), 53–77 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Takahashi T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8(12), 1499–1532 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Tartar, L.: An Abstract Regularity Theorem. Note 87.9 CMU, 1989, 1970

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Grandmont.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grandmont, C., Hillairet, M. Existence of Global Strong Solutions to a Beam–Fluid Interaction System. Arch Rational Mech Anal 220, 1283–1333 (2016). https://doi.org/10.1007/s00205-015-0954-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0954-y

Keywords

Navigation