Skip to main content

Magnetic Resonance Electrical Impedance Tomography

  • Chapter
  • First Online:
Electrical Properties of Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1380))

Abstract

Magnetic Resonance Electrical Impedance Tomography (MREIT) is a high-resolution bioimpedance imaging technique that has developed over a period beginning in the early 1990s to measure low-frequency (<1 kHz) tissue electrical properties. Low-frequency electrical properties are particularly important because they provide valuable information on cell structures and ionic composition of tissues, which may be very useful for diagnostic purposes. MREIT uses one component of the magnetic flux density data induced due to an exogenous-current administration, measured using an MRI machine, to reconstruct isotropic or anisotropic electrical property distributions. The MREIT technique typically requires two linearly independent current administrations to reconstruct conductivity uniquely. Since its invention, researchers have explored its potential for measuring electrical conductivity in regions such as the brain and muscle tissue. It has also been investigated in disease models, for example, cerebral ischemia and early tumor detection. In this chapter, we aim to provide a solid foundation of the different MREIT image reconstruction algorithms, including both isotropic and anisotropic conductivity reconstruction approaches. We will also explore the newly developed diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) method, a practical method for anisotropic tissue property imaging, at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term pseudocurrent was first introduced by Ma et al. [39].

References

  1. P.J. Basser, J. Mattiello, D. LeBihan, MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 256–67 (1994)

    Article  Google Scholar 

  2. O. Brigul, Y.Z. Ider, Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography, in Proceedings of the 9th International Conference on Electrical Bio-Impedance (1995), pp. 418–419

    Google Scholar 

  3. O. Brigul, Y.Z. Ider, Electrical impedance tomography using the magnetic field generated by injected currents, in Proceedings of the 18th Annual International Conference on IEEE Engineering in Medicine and Biology Society (IEEE EMBC, 1996), pp. 784–785

    Google Scholar 

  4. O. Birgul, B.M. Eyüboğlu, Y.Z. Ider, Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns. Phys. Med. Biol. 6, 215–225 (1998)

    Google Scholar 

  5. M. Chauhan, A. Indahlastari, A.K. Kasinadhuni, M. Schär, T.H. Mareci, R.J. Sadleir, Low-frequency conductivity tensor imaging of the human head in vivo using DT-MREIT: first study. IEEE Trans. Med. Imaging 37, 966–976 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  6. A.J. Davis, The Finite Element Method: A First Approach (Oxford University Press, 1980)

    Google Scholar 

  7. E. Değirmenci, B.M. Eyüboğlu, Anisotropic conductivity imaging with MREIT using equipotential projection algorithm. Phys. Med. Biol. 52, 7229–7242 (2007)

    Article  PubMed  Google Scholar 

  8. E. Değirmenci, B.M. Eyüboğlu, Image reconstruction in magnetic resonance conductivity tensor imaging (MRCTI). IEEE Trans. Med. Imaging 31, 525–532 (2012)

    Article  PubMed  Google Scholar 

  9. E. Değirmenci, B.M. Eyüboğlu, Practical realization of magnetic resonance conductivity tensor imaging (MRCTI). IEEE Trans. Med. Imaging 32, 601–608 (2013)

    Article  PubMed  Google Scholar 

  10. N.S. Gao, A. Zhu, B. He, A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity. Phys. Med. Biol. 51, 3067–3083 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  11. C. Göksu, K. Scheffler, H.R. Siebner, A. Thielscher, L.G. Hanson, The stray magnetic fields in magnetic resonance current density imaging (MRCDI). Phys. Med. 59, 142–50 (2019)

    Article  PubMed  Google Scholar 

  12. S. Grimnes, O.G. Martinsen, Bioimpedance and Bioelectricity Basics (Academic Press, Waltham, 2015)

    Google Scholar 

  13. Y.Z. Ider, S. Onart, Algebric reconstruction for 3D magnetic resonance electrical impedance tomography (MREIT) using one component of magnetic flux density. Physiol. Meas. 25, 281–294 (2004)

    Article  PubMed  Google Scholar 

  14. Y.Z. Ider, S. Onart, W.R.B. Lionheart, Uniqueness and reconstruction in magnetic resonance electrical impedance tomography (MREIT). Physiol. Meas. 24, 591–604 (2003)

    Article  PubMed  Google Scholar 

  15. K. Jeon, C.O. Lee, Coreha 2.0: a software package for in vivo MREIT experiments. Comput. Math. Methods Med. 2013, 941745 (8 pages) (2013)

    Google Scholar 

  16. W.C. Jeong, M. Chauhan, S.Z.K. Sajib, H.J. Kim, I. Sers̆a, O.I. Kwon, E.J. Woo, Optimization of magnetic flux density measurement using multiple RF receiver coils and multi-echo in MREIT. Phys. Med. Biol. 59, 4827–4844 (2014)

    Google Scholar 

  17. W.C. Jeong, S.Z.K. Sajib, K. Nitish, H.J. Kim, O.I. Kwon, E.J. Woo, Anisotropic conductivity tensor imaging of in vivo canine brain using DT-MREIT. IEEE Trans. Med. Imaging 36, 124–131 (2017)

    Article  PubMed  Google Scholar 

  18. M.L.G. Joy, G.C. Scott, R.M. Henkelman, In vivo detection of applied electric currents by magnetic resonance imaging. Magnetic Resonance Imaging 7, 89–94 (1989)

    Article  CAS  PubMed  Google Scholar 

  19. H.S. Khang, B.I. Lee, S.H. Oh, E.J. Woo, S.Y. Lee, M.H. Cho, O.I. Kwon, J.R. Yoon, J.K. Seo, J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): Phantom experiments for static resistivity images. IEEE Trans. Med. Imaging 21, 695–702 (2002)

    Article  PubMed  Google Scholar 

  20. Y.J. Kim, O.I. Kwon, J.K. Seo, E.J. Woo, Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography. Inverse Prob. 19, 1213–1225 (2003)

    Article  Google Scholar 

  21. H.J. Kim, B.I. Lee, Y. Cho, Y.T. Kim, B.T. Kang, H.M. Park, S.Y. Lee, J.K. Seo, E.J. Woo, Conductivity imaging of canine brain using a 3 T MREIT system: postmortem experiments. Physiol. Meas. 28, 1341–1353 (2007)

    Article  PubMed  Google Scholar 

  22. H.J. Kim, T.I. Oh, Y.T. Kim, B.I. Lee, E.J. Woo, J.K. Seo, S.Y. Lee, O.I. Kwon, C. Park, B.T. Kang, In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system. Physiol. Meas. 29, 1145–1155 (2008)

    Article  PubMed  Google Scholar 

  23. H.J. Kim, Y.T. Kim, A.S. Minhas, W.C. Jeong, E.J. Woo, J.K. Seo, O.I. Kwon, In vivo high resolution conductivity imaging of the human leg using MREIT: the first human experiment. IEEE Trans. Med. Imaging 28, 1681–1687 (2009)

    Article  PubMed  Google Scholar 

  24. H.J. Kim, Saurav Z. K. S., W. C. Jeong, M. N. Kim, O. Kwon, and E. J. Woo. Analysis of local projected current density from one component of magnetic flux density in MREIT. Inverse Prob. 29, 075001 (2013)

    Google Scholar 

  25. J.W. Kim, H.B. Kim, Y.J. Hue, N. Choi, B.K. Katoch, J.A. Park, H.J. Kim, E.J. Woo, MR-based electrical conductivity imaging of liver fibrosis in an experimental rat model. J. Magn. Resonance Imaging 53, 554–63 (2021)

    Article  Google Scholar 

  26. M. Kranjc, F. Bajd, I. Sers̆a, D. Miklavc̆ic̆, Magnetic resonance electrical impedance tomography for monitoring electric field distribution during tissue electroporation. IEEE Trans. Med. Imaging 30, 1771–1778 (2011)

    Google Scholar 

  27. M. Kranjc, B. Markelc, F. Bajd, M. C̆emaz̆ar, I. Sers̆a, T. Blagus, D. Miklavc̆ic̆, In situ monitoring of electric field distribution in mouse tumor during electroporation. Radiology 274, 115–123 (2015)

    Google Scholar 

  28. O.I. Kwon, J.Y. Lee, J.R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography. Inverse Prob. 18, 1089–1100 (2002)

    Article  Google Scholar 

  29. O.I. Kwon, E.J. Woo, J.R. Yoon, J.K. Seo, Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm. IEEE Trans. Biomed. Eng. 49, 160–167 (2002)

    Article  PubMed  Google Scholar 

  30. O.I. Kwon, W.C. Jeong, S.Z.K. Sajib, H.J. Kim, E.J. Woo, Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules. Phys. Med. Biol. 59, 2955–2974 (2014)

    Article  PubMed  Google Scholar 

  31. O. Kwon, S.Z.K. Sajib, I. Sers̆a, Y.I. Oh, W.C. Jeong, H.J. Kim, E.J. Woo, Current density imaging during transcranial direct current stimulation (tDCS) using DT-MRI and MREIT: algorithm development and numerical simulations. IEEE Trans. Biomed. Eng. 63, 168–175 (2016)

    Google Scholar 

  32. B.I. Lee, S.H. Oh, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, J.K. Seo, W.S. Baek, Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT). Physiol. Meas. 24, 579–589 (2003)

    Article  PubMed  Google Scholar 

  33. B.I. Lee, S.H. Oh, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, J.K. Seo, J.Y. Lee, W.S. Baek, Three-dimensional forward solver and its performance analysis in magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes. Phys. Med. Biol. 48, 1971–1986 (2003)

    Article  PubMed  Google Scholar 

  34. B.I. Lee, S.H. Lee, T.S. Kim, O.I. Kwon, E.J. Woo, J.K. Seo, Harmonic decomposition in PDE-based denoising technique for magnetic resonance electrical impedance tomography. IEEE Trans. Biomed. Eng. 52, 1912–1920 (2005)

    Article  PubMed  Google Scholar 

  35. B.I. Lee, S.H. Oh, T.S. Kim, E.J. Woo, S.Y. Lee, O. Kwon, J.K. Seo, Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography. Phys. Med. Biol. 51, 443–455 (2006)

    Article  PubMed  Google Scholar 

  36. T.H. Lee, H.S. Nam, M.G. Lee, Y.J. Kim, E.J. Woo, O.I. Kwon, Reconstruction of conductivity using the dual-loop method with one injection current in MREIT. Phys. Med. Biol. 55, 7523–7539 (2010)

    Article  PubMed  Google Scholar 

  37. C.O. Lee, K. Jeon, S. Ahn, H.J. Kim, E.J. Woo, Ramp-preserving denoising for conductivity image reconstruction in magnetic resonance electrical impedance tomography. IEEE Trans. Biomed. Eng. 58, 2038–50 (2011)

    Article  PubMed  Google Scholar 

  38. M.B. Lee, H.J. Kim, E.J. Woo, O.I. Kwon, Anisotropic conductivity tensor imaging for transcranial direct current stimulation (tDCS) using magnetic resonance diffusion tensor imaging (MR-DTI). PLoS One 13, e0197063 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  39. W. Ma, T.P. DeMonte, A.I. Nachman, N.M.H. Elsaid, M.L.G. Joy, Experimental implementation of a new method of imaging anisotropic electric conductivities (2013), pp. 6437–6440

    Google Scholar 

  40. A.S. Minhas, H.H. Kim, Z.J. Meng, Y.T. Kim, H.J. Kim, E.J. Woo, Three-dimensional MREIT simulator of static bioelectromagnetism and MRI. Biomed. Eng. Lett. 1, 129–136 (2011)

    Article  Google Scholar 

  41. A.S. Minhas, Y.T. Kim, P.J. Yoo, T.I. Oh, E.J. Woo, Experimental performance evaluation of multi-echo ICNE pulse sequence in magnetic resonance electrical impedance tomography. Magn. Resonance Med. 66, 957–965 (2011)

    Article  Google Scholar 

  42. L.T. Muftuler, M. Hamamura, O. Birgul, O. Nalcioglu, Resolution and contrast in magnetic resonance electrical impedance tomography (MREIT) and its application to cancer imaging. Technol. Cancer Res. Treatment 3, 599–609 (2004)

    Article  Google Scholar 

  43. H.S. Nam, O.I. Kwon, Axial anisotropic conductivity imaging based on projected current density in MREIT. IEEE Trans. Med. Imaging 29, 781–789 (2010)

    Article  PubMed  Google Scholar 

  44. H.S. Nam, B.I. Lee, J. Choi, C. Park, O.I. Kwon, Conductivity imaging with low level current injection using transversal J-substitution algorithm in MREIT. Phys. Med. Biol. 52, 6717–6730 (2007)

    Article  PubMed  Google Scholar 

  45. H.S. Nam, C. Park, O.I. Kwon, Non-iterative conductivity reconstruction algorithm using projected current density in MREIT. Phys. Med. Biol. 53, 6947–6961 (2008)

    Article  PubMed  Google Scholar 

  46. S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, J.K. Seo, Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography. Phys. Med. Biol. 48, 3101–3116 (2003)

    Article  PubMed  Google Scholar 

  47. S.H. Oh, B.I. Lee, T.S. Park, S.Y. Lee, E.J. Woo, M.H. Cho, J.K. Seo, O.I. Kwon, Magnetic resonance electrical impedance tomography at 3 Tesla field strength. Magn. Resonance Med. 51, 1292–1296 (2004)

    Article  Google Scholar 

  48. S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, T.S. Kim, O. Kwon, J.K. Seo, Electrical conductivity images of biological tissue phantoms in MREIT. Physiol. Meas. 26, S279–S288 (2005)

    Article  PubMed  Google Scholar 

  49. T.I. Oh, W.C. Jeong, J.E. Kim, S.Z.K. Sajib, H.J. Kim, O.I. Kwon, E.J. Woo, Noise analysis in fast magnetic resonance electrical impedance tomography (MREIT) based on spoiled multi gradient echo (spmge) pulse sequence. Phys. Med. Biol. 59, 4723–4738 (2014)

    Article  PubMed  Google Scholar 

  50. C. Park, B.I. Lee, O. Kwon, Analysis of recoverable current from one component of magnetic flux density in MREIT. Phys. Med. Biol. 52, 3001–3013 (2007)

    Article  PubMed  Google Scholar 

  51. B.J. Roth, N.G. Sepulveda, J.P. Wikswo, Using a magnetometer to image a two dimensional current distribution. J. Appl. Phys. 65, 361 (1989)

    Article  Google Scholar 

  52. M. Rullmann, A. Anwander, M. Dannhauer, S.K. Waefield, F.H. Fuffy, C.H. Wolters, EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. NeuroImage 44, 390–410 (2009)

    Article  Google Scholar 

  53. R.J. Sadleir, S.U. Grant, Z. Sung et al., Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11 T field strengths. Physiol. Meas. 26, 875–884 (2005)

    Article  PubMed  Google Scholar 

  54. S.Z.K. Sajib, H.J. Kim, O.I. Kwon, E.J. Woo, Regional absolute conductivity reconstruction using projected current density in MREIT. Phys. Med. Biol. 57, 5841–5859 (2012)

    Article  PubMed  Google Scholar 

  55. S.Z.K. Sajib, J.E. Kim, W.C. Jeong, H.J. Kim, O.I. Kwon, E.J. Woo, Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography. J. Appl. Phys. 117, 104701 (2015)

    Article  Google Scholar 

  56. S.Z.K. Sajib, O.I. Kwon, H.J. Kim, E.J. Woo, Electrodeless conductivity tensor imaging (CTI) using mri: basic theory and animal experiments. Biomed. Eng. Lett. 8, 273–82 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  57. S.Z.K. Sajib, K. Nitish, H.J. Kim, O.I. Kwon, E.J. Woo, Software toolbox for low-frequency conductivity and current density imaging using MRI. IEEE Trans. Biomed. Eng. 64, 2505–2514 (2017)

    Article  PubMed  Google Scholar 

  58. S.Z.K. Sajib, M.B. Lee, H.J. Kim, E.J. Woo, O.I. Kwon, Extracellular total electrolyte concentration imaging for electrical brain stimulation (EBS). Sci. Rep. 8, 209 (2018)

    Article  Google Scholar 

  59. S.Z.K. Sajib, M. Chauhan, G. Banan, S. Sahu, L. Wang, T.H. Mareci, R.J. Sadleir, Compensation of lead-wire magnetic field contributions in MREIT experiment using image segmentation: a phantom study, in Proceedings of the 27th Annual Meeting of the ISMRM. ISMRM (2019), p. 5049

    Google Scholar 

  60. S.Z.K. Sajib, M. Chauhan, O.I. Kwon, R.J. Sadleir, Magnetic-resonance-based measurement of electromagnetic fields and conductivity in vivo using single current administration – a machine learning approach. PLoS One 16, e0254690 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. G.C. Scott, M.L.G. Joy, R.L. Armstrong, R.M. Henkelman, Measurement of nonuniform current density by magnetic resonance. IEEE Trans. Med. Eng. 10, 362–374 (1991)

    Article  CAS  Google Scholar 

  62. G.C. Scott, M.L.G. Joy, R.L. Armstrong, R.M. Henkelman, Sensitivity of magnetic-resonance current-density imaging. J. Magn. Resonance 97, 235–254 (1992)

    CAS  Google Scholar 

  63. J.K. Seo, E.J. Woo, Nonlinear Inverse Problems in Imaging (John Wiley & Sons, 2012)

    Google Scholar 

  64. J.K. Seo, E.J. Woo, Electrical tissue property imaging at low frequency using MREIT. IEEE Trans. Biomed. Eng. 61, 1390–1399 (2014)

    Article  PubMed  Google Scholar 

  65. J.K. Seo, J.R. Yoon, E.J. Woo, O. Kwon, Reconstruction of conductivity and current densityimages using only one component of magnetic field measurements. IEEE Trans. Biomed. Eng. 50, 1121–1124 (2003)

    Article  PubMed  Google Scholar 

  66. J.K. Seo, H.C. Pyo, C.J. Park, O.I. Kwon, E.J. Woo, Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study. Phys. Med. Biol. 49, 4371–4382 (2004)

    Article  PubMed  Google Scholar 

  67. J.K. Seo, S.W. Kim, S. Kim, J.J. Liu, E.J. Woo, K. Jeon, C. Lee, Local harmonic bz algorithm with domain decomposition in MREIT: computer simulation study. IEEE Trans. Med. Imaging 27, 1754–1761 (2008)

    Article  PubMed  Google Scholar 

  68. J.K. Seo, J. Kiwan, C. Lee, E.J. Woo, Non-iterative harmonic bz algorithm in MREIT. Inverse Prob. 27, 085003 (2011)

    Article  Google Scholar 

  69. J.S. Startton, Electromagnetic Theory (McGraw-Hill, 1941)

    Google Scholar 

  70. D.S. Tuch, V.J. Wedeen, A.M. Dale, J.S. George, J.W. Belliveau, Conductivity tensor mapping of biological tissue using diffusion MRI. Ann. N. Y. Acad. Sci. 888, 314–316 (1999)

    Article  CAS  PubMed  Google Scholar 

  71. D.S. Tuch, V.J. Wedeen, A.M. Dale, J.S. George, J.W. Belliveau, Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Natl. Acad. Sci. 98, 11697–11701 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. E.J. Woo, J.K. Seo, Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging. Physiol. Meas. 29, R1–R26 (2008)

    Article  PubMed  Google Scholar 

  73. E.J. Woo, S.Y. Lee, C.W. Mun, Impedance tomography using internal current density distribution measured by nuclear magnetic resonance, in Proceedings of International Symposium on Optics, Imaging, and Instrumentation. SPIE, vol. 2299 (1994), pp. 377–385

    Google Scholar 

  74. H. Yazdanian, G.B. Saturnino, A. Thielscher, K. Knudsen, Fast evaluation of the biot-savart integral using FFT for electrical conductivity imaging. J. Comput. Phys. 411, 109408 (2020)

    Article  CAS  Google Scholar 

  75. N. Zhang, Electrical impedance tomography based on current density imaging. MS Thesis, Univeristy of Toronto, Canada, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind Sadleir .

Editor information

Editors and Affiliations

Appendices

Appendix 1

See Fig. 7.10.

Fig. 7.10
figure 10

Flow diagram for conductivity tensor reconstruction process using the non-iterative DT-MREIT algorithm [30]. The top row displays the measured diffusion tensor and reconstructed projected current density induced due to noncollinear current flow inside the imaging object which are used as an input to the algorithm. The bottom-left figure shows the reconstructed scale factor image obtained after solving the equation (7.60) described in Sect. 7.6.1. The reconstructed conductivity tensor components obtained from the scale factor and measured diffusion tensor are displayed in the middle column of the bottom row. The conductivity tensor is displayed at the bottom-right panel. Conductivity tensor of each voxel is represented by tri-axial ellipsoids. The radii of each ellipsoid are proportional to the eigenvalues, and their axes are oriented along the directions of the eigenvectors. The colors of the ellipsoid shown in the top-middle panel indicate the orientation of the principle eigenvector.

Appendix 2

See Fig. 7.11.

Fig. 7.11
figure 11

Flow diagram for conductivity tensor reconstruction process using iterative DT-MREIT algorithm described in Jeong et al. [17]. The top row displays the measured diffusion tensor and reconstructed projected current density induced due to noncollinear current flow inside the imaging object. These images were used as an input to the algorithm. A global scale factor of η0 = 0.4 S ⋅s/mm3 was used to obtain the initial \({ \mathbb C}^0\) distribution. The Laplace Eq. (7.4a) subject to the same boundary conditions was also solved to calculate the ∇u distribution. The JP, \({ \mathbb D}\) and ∇u information was used to update the scale factor and the corresponding conductivity tensor (7.67). The process was repeated until the solution converged. The bottom-right image displays the reconstructed scale factor and conductivity tensor at iteration number (n) 16.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sajib, S.Z.K., Sadleir, R. (2022). Magnetic Resonance Electrical Impedance Tomography. In: Sadleir, R., Minhas, A.S. (eds) Electrical Properties of Tissues. Advances in Experimental Medicine and Biology, vol 1380. Springer, Cham. https://doi.org/10.1007/978-3-031-03873-0_7

Download citation

Publish with us

Policies and ethics