Skip to main content
Log in

Three-dimensional MREIT simulator of static bioelectromagnetism and MRI

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

Magnetic resonance electrical impedance tomography (MREIT) aims to produce high-resolution cross-sectional images of a conductivity distribution inside the human body. We perform conductivity image reconstructions based on a relation between the conductivity distribution and induced magnetic flux density distributions subject to externally injected currents. This induced magnetic flux density is measured in MREIT using an MRI scanner. To facilitate MREIT research, we need a numerical simulator including static bioelectromagnetism and MRI data collection process. In this paper, we describe the development of a three-dimensional MREIT simulator (MREITSim).

Methods

We describe various features of MREITSim including geometry modeling, meshing, finite element modeling and numerical computations of magnetic flux density and k-space MR data. We demonstrate the underlying bioelectromagnetic phenomena and MR data collection process using phantom models of without and with anomaly. We illustrate effects of noise in MR data and echo time on magnetic flux density computations.

Results

We demonstrate numerical computations of current density and magnetic flux density distributions for current injections orthogonal to z-direction, the direction of the main magnetic field of an MRI scanner. The k-space MREIT data generation procedure is illustrated using a phantom model with an insulating anomaly.

Conclusions

The simulator functions as a virtual MREIT scanner and provides quantitative numerical results of intended experimental studies. We suggest the simulator as a basic research tool for future MREIT studies of its theory, algorithm, experimental techniques and pulse sequence design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woo EJ, Seo JK. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging. Physiol Meas. 2008; 29:R1–26.

    Article  Google Scholar 

  2. Sadleir RJ, Grant SC, Woo EJ. Can high-field MREIT be used to directly detect neural activity? Theoretical considerations. NeuroImage. 2010; 52:205–216.

    Article  Google Scholar 

  3. Kim HJ, Kim YT, Minhas AS, Jeong WC, Woo EJ, Seo JK, Kwon OJ. In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment. IEEE T Med Imaging. 2009; 28:1681–1687.

    Article  Google Scholar 

  4. Lee BI, Oh SH, Woo EJ, Lee SY, Cho MH, Kwon O, Seo JK, Lee JY, Baek WS. Three-dimensional forward solver and its performance analysis in magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes. Phys Med Biol. 2003; 48:1971–1986.

    Article  Google Scholar 

  5. Oh SH, Lee BI, Park TS, Lee SY, Woo EJ, Cho MH, Kwon O, Seo JK. Magnetic resonance electrical impedance tomography at 3 Tesla field strength. Magnet Reson Med. 2008; 51:1292–1296.

    Article  Google Scholar 

  6. Oh SH, Lee BI, Woo EJ, Lee SY, Cho MH, Kwon O, Seo JK. Conductivity and current density image reconstruction using harmonic B z algorithm in magnetic resonance electrical impedance tomography. Phys Med Biol. 2003; 48:3101–3116.

    Article  Google Scholar 

  7. Jeon K, Lee C-O, Kim HJ, Woo EJ, Seo JK. CoReHA: conductivity reconstructor using harmonic algorithms for magnetic resonance electrical impedance tomography (MREIT). J Biomed Eng Res. 2009; 30:279–287.

    Article  Google Scholar 

  8. Saad Y. Iterative methods for sparse linear systems. Philadelphia, PA: SIAM; 2005.

    Google Scholar 

  9. Toselli A, Widlund O. Domain decomposition methods-algorithms and theory. Berlin, Germany: Springer Series in Computational Mathematics; 2005.

    MATH  Google Scholar 

  10. Dohrmann CR. A preconditioner for substructuring based on constrained energy minimization. SIAM J Sci Comput. 2003; 25:246–258.

    Article  MathSciNet  MATH  Google Scholar 

  11. Frigo M, Johnson SG. The design and implementation of FFTW3. Proc IEEE. 2005; 93:216–231.

    Article  Google Scholar 

  12. Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. London, UK: Elsevier Academic Press; 2004.

    Google Scholar 

  13. Park C, Lee BI, Kwon O, Woo EJ. Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT. Physiol Meas. 2006; 28:117–127.

    Article  Google Scholar 

  14. Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B 0 inhomogeneity correction. Magnet Reson Med. 1991; 18:371–383.

    Article  Google Scholar 

  15. Minhas AS, Woo EJ, Lee SY. Magnetic flux density measurement with balanced steady-state free precession pulse sequence for MREIT: a simulation study. Conf Proc IEEE Eng Med Biol Soc. 2009; 1:2276–2278.

    Google Scholar 

  16. Li J, Widlund OB. FETI-DP, BDDC, and block Cholesky methods. Int J Numer Meth Eng. 2006; 66:250–271.

    Article  MathSciNet  MATH  Google Scholar 

  17. Farhat C, Mandel J, Roux FX. Optimal convergence properties of the FETI domain decomposition method. Comput Methods Appl Mech Eng. 1994; 115:365–385.

    Article  MathSciNet  Google Scholar 

  18. Oh TI, Kim YT, Minhas A, Seo JK, Kwon OI, Woo EJ. Ion mobility imaging and contrast mechanism of apparent conductivity in MREIT. Phys Med Biol. 2011; 56:2265–2277.

    Article  Google Scholar 

  19. Stollberger R, Wach P. Imaging the active B1 field in vivo. Magnet Reson Med. 1996; 35:246–251.

    Article  Google Scholar 

  20. Katscher U, Viogt T, Findeklee C, Vernickel P, Nehrke K, Dossel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE T Med Imaging. 2009; 28:1365–1374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eung Je Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minhas, A.S., Kim, H.H., Meng, Z.J. et al. Three-dimensional MREIT simulator of static bioelectromagnetism and MRI. Biomed. Eng. Lett. 1, 129–136 (2011). https://doi.org/10.1007/s13534-011-0020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-011-0020-0

Keywords

Navigation