Skip to main content

Imaging of the Spinal Cord

  • Chapter
  • First Online:
Myelopathy

Abstract

Spinal cord imaging plays an important role in the evaluation and management of patients with myelopathy. The small size of the spinal cord together with its location in the spinal canal and proximity to moving structures in the neck and thorax create a number of challenges that are unique to spinal cord imaging. MRI is the workhorse for spinal cord imaging, but other modalities also have a role in the evaluation of myelopathy. In this chapter, we illustrate the applications and limitations of anatomical and vascular spinal cord imaging techniques routinely employed in clinical neuroradiology. We also describe some of the common pitfalls in spinal imaging, with potential strategies to minimize or avoid them. We conclude with a discussion of several emerging advanced imaging techniques that are likely to play an increasing role in the clinical evaluation of myelopathy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fedutes BA, Ansani NT. Seizure potential of concomitant medications and radiographic contrast media agents. Ann Pharmacother. 2003;37:1506–10.

    Article  CAS  Google Scholar 

  2. Singh S, Rajpal C, Nannapeneni S, Venkatesh S. Iopamidol myelography-induced seizures. Med Gen Med. 2005;7:11.

    Google Scholar 

  3. Ferré JC, Carsin-Nicol B, Hamlat A, Carsin M, Morandi X. MR imaging features of idiopathic thoracic spinal cord herniations using combined 3D-fiesta and 2D-PC cine techniques. J Neuroradiol. 2005;32:125–30.

    Article  Google Scholar 

  4. Morris JM, Kaufmann TJ, Campeau NG, Cloft HJ, Lanzino G. Volumetric myelographic magnetic resonance imaging to localize difficult-to-find spinal dural arteriovenous fistulas. J Neurosurg Spine. 2011;14:398–404. https://doi.org/10.3171/2010.11.SPINE10328.

    Article  PubMed  Google Scholar 

  5. Nakagawa A, Kusaka Y, Jokura H, Shirane R, Tominaga T. Usefulness of constructive interference in steady state (CISS) imaging for the diagnosis and treatment of a large extradural spinal arachnoid cyst. Minim Invasive Neurosurg. 2004;47:369–72.

    Article  CAS  Google Scholar 

  6. Roser F, Ebner FH, Danz S, Riether F, Ritz R, Dietz K, et al. Three-dimensional constructive interference in steady-state magnetic resonance imaging in syringomyelia: advantages over conventional imaging. J Neurosurg Spine. 2008;8:429–35. https://doi.org/10.3171/SPI/2008/8/5/429.

    Article  PubMed  Google Scholar 

  7. Sakoda A, Yamashita KI, Hayashida M, Iwamoto Y, Yamasaki R, Kira JI. A case of superficial siderosis ameliorated after closure of dural deficit detected by MRI-CISS (constructive interference in steady state) imaging. Rinsho Shinkeigaku. 2017;57:180–3. https://doi.org/10.5692/clinicalneurol.cn-000960.

    Article  PubMed  Google Scholar 

  8. Honey CM, Martin KW, Heran MKS. Syringomyelia fluid dynamics and cord motion revealed by serendipitous null point artifacts during cine MRI. AJNR Am J Neuroradiol. 2017;38:1845–7. https://doi.org/10.3174/ajnr.A5328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chong AL, Chandra RV, Chuah KC, El R, Stuckey SL. Proton density MRI increases detection of cervical spinal cord multiple sclerosis lesions compared with T2-weighted fast spin-echo. AJNR Am J Neuroradiol. 2016;37:180–4. https://doi.org/10.3174/ajnr.A4476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Simon JH, Li D, Traboulsee A, Coyle PK, Arnold DL, Barkhof F, et al. Standardized MR imaging protocol for multiple sclerosis: consortium of MS centers consensus guidelines. AJNR Am J Neuroradiol. 2006;27:455–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Do BH, Mari C, Tseng JR, Quon A, Rosenberg J, Biswal S. Pattern of 18F-FDG uptake in the spinal cord in patients with non-central nervous system malignancy. Spine (Phila Pa 1976). 2011;36:E1395–401. https://doi.org/10.1097/BRS.0b013e31820a7df8.

    Article  Google Scholar 

  12. Taralli S, Leccisotti L, Mattoli MV, Castaldi P, de Waure C, Mancuso A, et al. Physiological activity of spinal cord in children: an 18F-FDG PET-CT study. Spine (Phila Pa 1976). 2015;40:E647–52. https://doi.org/10.1097/BRS.0000000000000895.

    Article  Google Scholar 

  13. Patel NJ, Gupta V, Vibhute PG, Jain MK, Accurso JM. A large cohort study of 18F fluoro-deoxy-glucose uptake in normal spinal cord: quantitative assessment of the contamination from adjacent vertebral marrow uptake and validity of normalizing the cord uptake against the lumbar thecal sac. J Comput Assist Tomogr. 2017;41:125–30. https://doi.org/10.1097/RCT.0000000000000479.

    Article  PubMed  Google Scholar 

  14. Eicker SO, Langen KJ, Galldiks N, Stoffels G, Herdmann J, Steiger HJ, et al. Clinical value of 2-deoxy-[18F]fluoro-D-glucose positron emission tomography in patients with cervical spondylotic myelopathy. Neurosurg Focus. 2013;35:E2. https://doi.org/10.3171/2013.3.FOCUS1379.

    Article  PubMed  Google Scholar 

  15. Richards PJ, George J, Metelko M, Brown M. Spine computed tomography doses and cancer induction. Spine (Phila Pa 1976). 2010;35:430–3. https://doi.org/10.1097/BRS.0b013e3181cdde47.

    Article  Google Scholar 

  16. Morris JM. Imaging of dural arteriovenous fistula. RadiolClin North Am. 2012;50:823–39. https://doi.org/10.1016/j.rcl.2012.04.011.

    Article  Google Scholar 

  17. Oda S, Utsunomiya D, Hirai T, Kai Y, Ohmori Y, Shigematsu Y, et al. Comparison of dynamic contrast-enhanced 3T MR and 64-row multidetector CT angiography for the localization of spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol. 2014;35:407–12. https://doi.org/10.3174/ajnr.A3660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wheaton AJ, Miyazaki M. Non-contrast enhanced MR angiography: physical principles. J Magn Reson Imaging. 2012;36:286–304. https://doi.org/10.1002/jmri.23641.

    Article  PubMed  Google Scholar 

  19. Hadizadeh DR, Marx C, Gieseke J, Schild HH, Willinek WA. High temporal and high spatial resolution MR angiography (4D-MRA). Rofo. 2014;186:847–59. https://doi.org/10.1055/s-0034-1366661.

    Article  PubMed  CAS  Google Scholar 

  20. Zhou G, Li MH, Lu C, Yin YL, Zhu YQ, Wei XE, et al. Dynamic contrast-enhanced magnetic resonance angiography for the localization of spinal dural arteriovenous fistulas at 3T. J Neuroradiol. 2017;44:17–23. https://doi.org/10.1016/j.neurad.2016.10.002.

    Article  PubMed  CAS  Google Scholar 

  21. Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics. 2018;38:450–61. https://doi.org/10.1148/rg.2018170102.

    Article  PubMed  Google Scholar 

  22. Levy LM, Di Chiro G, Brooks RA, Dwyer AJ, Wener L, Frank J. Spinal cord artifacts from truncation errors during MR imaging. Radiology. 1988;166:479–83.

    Article  CAS  Google Scholar 

  23. Levy LM. MR imaging of cerebrospinal fluid flow and spinal cord motion in neurologic disorders of the spine. Magn Reson Imaging Clin N Am. 1999;7:573–87.

    Article  CAS  Google Scholar 

  24. Bae YJ, Lee JW, Lee E, Yeom JS, Kim KJ, Kang HS. Cervical compressive myelopathy: flow analysis of cerebrospinal fluid using phase-contrast magnetic resonance imaging. Eur Spine J. 2017;26:40–8. https://doi.org/10.1007/s00586-016-4874-9.

    Article  PubMed  Google Scholar 

  25. Bunck AC, Kroger JR, Juttner A, Brentrup A, Fiedler B, Schaarschmidt F, et al. Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervicaljunction and the cervical spinal canal. EurRadiol. 2011;21:1788–96. https://doi.org/10.1007/s00330-011-2105-7.

    Article  Google Scholar 

  26. Haber MD, Nguyen DD, Li S. Differentiation of idiopathic spinal cord herniation from CSF-isointense intraspinal extramedullary lesions displacing the cord. Radiographics. 2014;34:313–29. https://doi.org/10.1148/rg.342125136.

    Article  PubMed  Google Scholar 

  27. Tanenbaum LN. Clinical applications of diffusion imaging in the spine. Magn Reson Imaging Clin N Am. 2013;21:299–320. https://doi.org/10.1016/j.mric.2012.12.002.

    Article  PubMed  Google Scholar 

  28. Vargas MI, Delattre BMA, Boto J, Gariani J, Dhouib A, Fitsori A, et al. Advanced magnetic resonance imaging (MRI) techniques of the spine and spinal cord in children and adults. Insights Imaging. 2018; https://doi.org/10.1007/s13244-018-0626-1.

  29. Hayes LL, Jones RA, Palasis S, Aguilera D, Porter DA. Drop metastases to the pediatric spine revealed with diffusion-weighted MR imaging. Pediatr Radiol. 2012;42:1009–13. https://doi.org/10.1007/s00247-011-2295-9.

    Article  PubMed  Google Scholar 

  30. Andre JB, Bammer R. Advanced diffusion-weighted magnetic resonance imaging techniques of the human spinal cord. Top Magn Reson Imaging. 2010;21:367–78. https://doi.org/10.1097/RMR.0b013e31823e65a1.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Germin BI, Ekholm S. A case of cervical spinal cord glioblastoma diagnosed with MR diffusion tensor and perfusion imaging. J Neuroimaging. 2011;21:292–6. https://doi.org/10.1111/j.1552-6569.2009.00459.x.

    Article  PubMed  Google Scholar 

  32. Liu X, Kolar B, Tian W, Germin BI, Huang Y, Hu R, et al. MR perfusion-weighted imaging may help in differentiating between nonenhancing gliomas and nonneoplastic lesions in the cervicomedullary junction. J Magn Reson Imaging. 2011;34:196–202. https://doi.org/10.1002/jmri.22594.

    Article  PubMed  Google Scholar 

  33. Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 2013;26:1004–27. https://doi.org/10.1002/nbm.2940.

    Article  PubMed  Google Scholar 

  34. Leach MO, Morgan B, Tofts PS, Buckley DL, Huang W, Horsfield MA, et al. Imaging vascular function for early stage clinical trials using dynamic contrast enhanced magnetic resonance imaging. Eur Radiol. 2012;22:1451–64. https://doi.org/10.1007/s00330-012-2446-x.

    Article  PubMed  CAS  Google Scholar 

  35. Mazura JC, Karimi S, Pauliah M, Banihashemi MA, Gobin YP, Bilsky MH, et al. Dynamic contrast enhanced magnetic resonance perfusion compared with digital subtraction angiography for the evaluation of extradural spinal metastases: a pilot study. Spine (Phila Pa 1976). 2014;39:E950–4. https://doi.org/10.1097/BRS.0000000000000409.

    Article  Google Scholar 

  36. Bilgen M, Narayana PA. A pharmacokinetic model for quantitative evaluation of spinal cord injury with dynamic contrast enhanced magnetic resonance imaging. Magn Reson Med. 2001;46:1099–106.

    Article  CAS  Google Scholar 

  37. Tatar I, Chou PC, Desouki MM, El Sayed H, Bilgen M. Evaluating regional blood spinal cord barrier dysfunction following spinal cord injury using longitudinal dynamic contrast-enhanced MRI. BMC Med Imaging. 2009;9:10. https://doi.org/10.1186/1471-2342-9-10.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Duhamel G, Callot V, Decherchi P, Le Fur Y, Margueste T, Cozzone PJ, et al. Mouse lumbar and cervical spinal cord blood flow measurements by arterial spin labeling: sensitivity optimization and first application. Magn Reson Med. 2009;62:430–9. https://doi.org/10.1002/mrm.22015.

    Article  PubMed  Google Scholar 

  39. Hock A, Henning A, Boesiger P, Kollias SS. (1)H-MR spectroscopy in the human spinal cord. AJNR Am J Neuroradiol. 2013;34:1682–9. https://doi.org/10.3174/ajnr.A3342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Carew JD, Nair G, Pineda-Alonso N, Usher S, Hu X, Benatar M. Magnetic resonance spectroscopy of the cervical cord in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011;12:185–91. https://doi.org/10.3109/17482968.2010.515223.

    Article  PubMed  CAS  Google Scholar 

  41. Holly LT, Ellingson BM, Salamon N. Metabolic imaging using proton magnetic spectroscopy as a predictor of outcome following surgery for cervical spondylotic myelopathy. Clin Spine Surg. 2017;30:E615–9. https://doi.org/10.1097/BSD.0000000000000248.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Leitch JK, Figley CR, Stroman PW. Applying functional MRI to the spinal cord and brainstem. Magn Reson Imaging. 2010;28:1225–33. https://doi.org/10.1016/j.mri.2010.03.032.

    Article  PubMed  Google Scholar 

  43. Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med. 1989;10:135–44.

    Article  CAS  Google Scholar 

  44. Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed. 2001;14:57–64.

    Article  CAS  Google Scholar 

  45. Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM. Characterizing white matter with magnetization transfer and T(2). Magn Reson Med. 1999;42:1128–36.

    Article  CAS  Google Scholar 

  46. Smith SA, Pekar JJ, van Zijl PC. Advanced MRI strategies for assessing spinal cord injury. Handb Clin Neurol. 2012;109:85–101.

    Article  Google Scholar 

  47. Martin AR, De Leener B, Cohen-Adad J, Kalsi-Ryan S, Cadotte DW, Wilson JR, et al. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One. 2018;13:e0195733.

    Article  CAS  Google Scholar 

  48. Varma G, Girard OM, Prevost VH, Grant AK, Duhamel G, Alsop DC. Interpretation of magnetization transfer from inhomogeneously broadened lines (ihMT) in tissues as a dipolar order effect within motion restricted molecules. J Magn Reson. 2015;260:67–76.

    Article  CAS  Google Scholar 

  49. Varma G, Duhamel G, de Bazelaire C, Alsop DC. Magnetization transfer from inhomogeneously broadened lines: a potential marker for myelin. Magn Reson Med. 2015;73:614–22.

    Article  CAS  Google Scholar 

  50. Du YP, Chu R, Hwang D, Brown MS, Kleinschmidt-DeMasters BK, Singel D, et al. Fast multislice mapping of the myelin water fraction using multicompartment analysis of T2* decay at 3T: a preliminary postmortem study. Magn Reson Med. 2007;58:865–70.

    Article  Google Scholar 

  51. Sati P, van Gelderen P, Silva AC, Reich DS, Merkle H, de Zwart JA, et al. Micro-compartment specific T2* relaxation in the brain. NeuroImage. 2013;77:268–78.

    Article  Google Scholar 

  52. Nam Y, Lee J, Hwang D, Kim DH. Improved estimation of myelin water fraction using complex model fitting. NeuroImage. 2015;116:214–21.

    Article  CAS  Google Scholar 

  53. Lenz C, Klarhofer M, Scheffler K. Feasibility of in vivo myelin water imaging using 3D multigradient-echo pulse sequences. Magn Reson Med. 2012;68:523–8. https://doi.org/10.1002/mrm.23241.

    Article  PubMed  CAS  Google Scholar 

  54. Labadie C, Lee JH, Rooney WD, Jarchow S, Aubert-Frecon M, Springer CS Jr, et al. Myelin water mapping by spatially regularized longitudinal relaxographic imaging at high magnetic fields. Magn Reson Med. 2014;71:375–87.

    Article  Google Scholar 

  55. Deoni SC, Rutt BK, Arun T, Pierpaoli C, Jones DK. Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn Reson Med. 2008;60:1372–87.

    Article  Google Scholar 

  56. MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med. 1994;31:673–7.

    Article  CAS  Google Scholar 

  57. Wu Y, Alexander AL, Fleming JO, Duncan ID, Field AS. Myelin water fraction in human cervical spinal cord in vivo. J Comput Assist Tomogr. 2006;30:304–6.

    Article  Google Scholar 

  58. Prasloski T, Rauscher A, MacKay AL, Hodgson M, Vavasour IM, Laule C, et al. Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. NeuroImage. 2012;63:533–9.

    Article  Google Scholar 

  59. Oh J, Han ET, Lee MC, Nelson SJ, Pelletier D. Multislice brain myelin water fractions at 3T in multiple sclerosis. J Neuroimag. 2007;17:156–63.

    Article  Google Scholar 

  60. Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging. 2006;24:33–43.

    Article  Google Scholar 

  61. Nguyen TD, Wisnieff C, Cooper MA, Kumar D, Raj A, Spincemaille P, et al. T(2) prep three-dimensional spiral imaging with efficient whole brain coverage for myelin water quantification at 1.5 tesla. Magn Reson Med. 2012;67:614–21.

    Article  Google Scholar 

  62. Nguyen TD, Deh K, Monohan E, Pandya S, Spincemaille P, Raj A, et al. Feasibility and reproducibility of whole brain myelin water mapping in 4 minutes using fast acquisition with spiral trajectory and adiabatic T2prep (FAST-T2) at 3T. Magn Reson Med. 2016;76:456–65. https://doi.org/10.1002/mrm.25877.

    Article  PubMed  CAS  Google Scholar 

  63. Laule C, Leung E, Lis DK, Traboulsee AL, Paty DW, MacKay AL, et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler. 2006;12:747–53.

    Article  CAS  Google Scholar 

  64. Laule C, Kozlowski P, Leung E, Li DK, Mackay AL, Moore GR. Myelin water imaging of multiple sclerosis at 7 T: correlations with histopathology. NeuroImage. 2008;40:1575–80.

    Article  Google Scholar 

  65. Laule C, Yung A, Pavolva V, Bohnet B, Kozlowski P, Hashimoto SA, et al. High-resolution myelin water imaging in post-mortem multiple sclerosis spinal cord: a case report. Mult Scler. 2016;22:1485–9.

    Article  Google Scholar 

  66. Minty EP, Bjarnason TA, Laule C, Mackay AL. Myelin water measurement in the spinal cord. Magn Reson Med. 2009;61:883–92.

    Article  Google Scholar 

  67. Laule C, Vavasour IM, Zhao Y, Traboulsee AL, Oger J, Vavasour JD, et al. Two-year study of cervical cord volume and myelin water in primary progressive multiple sclerosis. Mult Scler. 2010;16:670–7.

    Article  CAS  Google Scholar 

  68. MacMillan EL, Madler B, Fichtner N, Dvorak MF, Li DK, Curt A, et al. Myelin water and T(2) relaxation measurements in the healthy cervical spinal cord at 3.0T: repeatability and changes with age. NeuroImage. 2011;54:1083–90.

    Article  Google Scholar 

  69. Kolind SH, Deoni SC. Rapid three-dimensional multicomponent relaxation imaging of the cervical spinal cord. Magn Reson Med. 2011;65:551–6.

    Article  Google Scholar 

  70. Liu H, MacMillian EL, Jutzeler CR, Ljungberg E, MacKay AL, Kolind SH, et al. Assessing structure and function of myelin in cervical spondylotic myelopathy: evidence of demyelination. Neurology. 2017;89:602–10.

    Article  CAS  Google Scholar 

  71. Laule C, MacKay AL. T2 relaxation. In: Cohen-Adad J, Wheeler-Kingshott CA, editors. Quantitative MRI of the spinal cord. Elsevier; 2014. p. 179–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Laule .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stechishin, O.D.M., Heran, M.K.S., Shewchuk, J.R., Vertinsky, A.T., Laule, C. (2022). Imaging of the Spinal Cord. In: Greenberg, B. (eds) Myelopathy. Springer, Cham. https://doi.org/10.1007/978-3-030-99906-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99906-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99905-6

  • Online ISBN: 978-3-030-99906-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics