Skip to main content

Energy Harvesting in IoT-Enabled Flexible Sensors: Smart Sensing and Secure Access Control

  • Chapter
  • First Online:
Flexible Sensors for Energy-Harvesting Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 42))

  • 486 Accesses

Abstract

Energy harvesting is a significant issue in IoT systems. Due to the resource-constrained nature of the device and system-specific requirements for designing an IoT system, it is crucial to consider such an issue in the IoT paradigm. This chapter discusses the flexible adaption of energy harvesting issues from two significant points of view: (i) choosing appropriate fabrication methods and (ii) the need for security probation for securing data access for those sensors from placing appropriate access control solutions. Access control preserves the three commonly used security properties, namely, (i) confidentiality, (ii) integrity, and (iii) availability. Confidentiality ensures that the information remains private and will only be available to the authorized users upon request. Integrity ensures that the information is not tampered with and is being protected by others. Finally, the availability ensures that the information is available when needed. In other words, availability assures that the information is obtained by an authenticated user when required. This chapter also discusses various novel IoT architectures significant for a more efficient and effective IoT system design considering energy uses and security solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Pal, M. Hitchens, V. Varadharajan, T. Rabehaja, Policy-based access control for constrained healthcare resources in the context of the Internet of Things. J. Netw. Comput. Appl. 139, 57–74 (2019)

    Article  Google Scholar 

  2. S. Pal, T. Rabehaja, M. Hitchens, V. Varadharajan, A. Hill, On the design of a flexible delegation model for the Internet of Things using blockchain. IEEE Trans. Ind. Inf. 16(5), 3521–3530 (2019)

    Article  Google Scholar 

  3. W. Tolone, G.-J. Ahn, T. Pai, S.-P. Hong, Access control in collaborative systems. ACM Comput. Surv. (CSUR) 37(1), 29–41 (2005)

    Article  Google Scholar 

  4. I. Alqassem, Privacy and security requirements framework for the internet of things (IoT), in Companion Proceedings of the 36th International Conference on Software Engineering, pp. 739–741 (2014)

    Google Scholar 

  5. T. Rabehaja, S. Pal, M. Hitchens, Design and implementation of a secure and flexible access-right delegation for resource constrained environments. Futur. Gener. Comput. Syst. 99, 593–608 (2019)

    Article  Google Scholar 

  6. S.C. Mukhopadhyay, Novel planar electromagnetic sensors: modeling and performance evaluation. Sensors 5(12), 546–579 (2005)

    Article  Google Scholar 

  7. S.C. Mukhopadhyay, New Developments in Sensing Technology for Structural Health Monitoring (Springer, 2011)

    Google Scholar 

  8. A. Nag, A.I. Zia, X. Li, S.C. Mukhopadhyay, J. Kosel, Novel sensing approach for LPG leakage detection: part I—operating mechanism and preliminary results. IEEE Sens. J. 16(4), 996–1003 (2015)

    Article  Google Scholar 

  9. A. Nag, A.I. Zia, X. Li, S.C. Mukhopadhyay, J. Kosel, Novel sensing approach for LPG leakage detection—part II: effects of particle size, composition, and coating layer thickness. IEEE Sens. J. 16(4), 1088–1094 (2015)

    Article  Google Scholar 

  10. J. Zhu et al., Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 11(1), 7 (2020)

    Article  Google Scholar 

  11. D. Panescu, MEMS in medicine and biology. IEEE Eng. Med. Biol. Mag. 25(5), 19–28 (2006)

    Article  Google Scholar 

  12. N. Afsarimanesh, A. Nag, M.E.E. Alahi, T. Han, S.C. Mukhopadhyay, Interdigital sensors: biomedical, environmental and industrial applications. Sens. Actuators A: Phys. 111923 (2020)

    Google Scholar 

  13. M.E.E. Alahi, L. Xie, S. Mukhopadhyay, L. Burkitt, A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. 64(9), 7333–7341 (2017)

    Article  Google Scholar 

  14. A. Valente, R. Morais, C. Couto, J. Correia, Modeling and simulation of a silicon soil moisture sensor based on the DPHP method for agriculture (2003)

    Google Scholar 

  15. A.I. Zia, S.C. Mukhopadhyay, P.-L. Yu, I.H. Al-Bahadly, C.P. Gooneratne, J. Kosel, Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens. Bioelectron. 67, 342–349 (2015)

    Article  CAS  Google Scholar 

  16. C. Rogers et al., A universal 3D imaging sensor on a silicon photonics platform. Nature 590(7845), 256–261 (2021)

    Article  CAS  Google Scholar 

  17. C.-H. Weng, G. Pillai, S.-S. Li, A thin-film piezoelectric-on-silicon MEMS oscillator for mass sensing applications. IEEE Sens. J. 20(13), 7001–7009 (2020)

    Article  CAS  Google Scholar 

  18. T. Han, A. Nag, N. Afsarimanesh, S.C. Mukhopadhyay, S. Kundu, Y. Xu, Laser-assisted printed flexible sensors: a review. Sensors 19(6), 1462 (2019)

    Article  CAS  Google Scholar 

  19. M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators, A 269, 79–90 (2018)

    Article  CAS  Google Scholar 

  20. A. Nag, S.C. Mukhopadhyay, Fabrication and implementation of printed sensors for taste sensing applications. Sens. Actuators, A 269, 53–61 (2018)

    Article  CAS  Google Scholar 

  21. A. Nag, S.C. Mukhopadhyay, J. Kosel, Sensing system for salinity testing using laser-induced graphene sensors. Sens. Actuators, A 264, 107–116 (2017)

    Article  CAS  Google Scholar 

  22. T. Han et al., Multifunctional flexible sensor based on laser-induced graphene. Sensors 19(16), 3477 (2019)

    Article  CAS  Google Scholar 

  23. A. Nag, N. Afasrimanesh, S. Feng, S.C. Mukhopadhyay, Strain induced graphite/PDMS sensors for biomedical applications. Sens. Actuators, A 271, 257–269 (2018)

    Article  CAS  Google Scholar 

  24. A. Nag, S.C. Mukhopadhyay, J. Kosel, Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens. Actuators, A 251, 148–155 (2016)

    Article  CAS  Google Scholar 

  25. A. Nag, S. Feng, S. Mukhopadhyay, J. Kosel, D. Inglis, 3D printed mould-based graphite/PDMS sensor for low-force applications. Sens. Actuators, A 280, 525–534 (2018)

    Article  CAS  Google Scholar 

  26. L. Atzori, A. Iera, G. Morabito, M. Nitti, The social internet of things (siot)–when social networks meet the internet of things: Concept, architecture and network characterization. Comput. Netw. 56(16), 3594–3608 (2012)

    Article  Google Scholar 

  27. J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  28. L. Tan, N. Wang, Future internet: the internet of things, in 2010 3rd international conference on advanced computer theory and engineering (ICACTE), vol. 5, pp. V5-376-V5-380 (IEEE, 2010)

    Google Scholar 

  29. S. Haller, S. Karnouskos, C. Schroth, The internet of things in an enterprise context, in Future Internet Symposium, pp. 14–28 (Springer, 2008)

    Google Scholar 

  30. S. Pal, M. Hitchens, V. Varadharajan, Modeling identity for the internet of things: survey, classification and trends, in 2018 12th International Conference on Sensing Technology (ICST), pp. 45–51 (IEEE, 2018)

    Google Scholar 

  31. S. Pal, M. Hitchens, V. Varadharajan, T. Rabehaja, On design of a fine-grained access control architecture for securing iot-enabled smart healthcare systems, in Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 432–441 (2017).

    Google Scholar 

  32. S. Pal, T. Rabehaja, A. Hill, M. Hitchens, V. Varadharajan, On the integration of blockchain to the internet of things for enabling access right delegation. IEEE Internet Things J. 7(4), 2630–2639 (2019)

    Article  Google Scholar 

  33. R. Khan, S.U. Khan, R. Zaheer, S. Khan, Future internet: the internet of things architecture, possible applications and key challenges, in 2012 10th International Conference on Frontiers of Information Technology, pp. 257–260 (IEEE, 2012)

    Google Scholar 

  34. F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, M.A. Javed, A survey of device-to-device communications: research issues and challenges. IEEE Commun. Surv. Tutor. 20(3), 2133–2168 (2018)

    Article  Google Scholar 

  35. S. Pal, M. Hitchens, V. Varadharajan, Towards a secure access control architecture for the Internet of Things, in 2017 IEEE 42nd Conference on Local Computer Networks (LCN), pp. 219–222 (IEEE, 2017)

    Google Scholar 

  36. S. Pal, Extending mobile cloud platforms using opportunistic networks: survey, classification and open issues. J. Univers. Comput. Sci. 21(12), 1594–1634 (2015)

    Google Scholar 

  37. A. Nag, S.C. Mukhopadhyay, J. Kosel, Wearable flexible sensors: a review. IEEE Sens. J. 17(13), 3949–3960 (2017)

    Article  CAS  Google Scholar 

  38. S. M. Iqbal, I. Mahgoub, E. Du, M.A. Leavitt, W. Asghar, Advances in healthcare wearable devices. npj Flex. Electron. 5(1), 1–14 (2021)

    Google Scholar 

  39. B. Peng, F. Zhao, J. Ping, Y. Ying, Recent advances in nanomaterial-enabled wearable sensors: material synthesis, sensor design, and personal health monitoring. Small 16(44), 2002681 (2020)

    Article  CAS  Google Scholar 

  40. X. Xuan, H.S. Yoon, J.Y. Park, A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109, 75–82 (2018)

    Article  CAS  Google Scholar 

  41. M. Mathew, S. Radhakrishnan, A. Vaidyanathan, B. Chakraborty, C.S. Rout, Flexible and wearable electrochemical biosensors based on two-dimensional materials: recent developments. Anal. Bioanal. Chem. 413(3), 727–762 (2021)

    Article  CAS  Google Scholar 

  42. P.C. Ferreira et al., Wearable electrochemical sensors for forensic and clinical applications. TrAC Trends Anal. Chem. 119, 115622 (2019)

    Google Scholar 

  43. S. Yoon, H.-K. Kim, Cost-effective stretchable Ag nanoparticles electrodes fabrication by screen printing for wearable strain sensors. Surf. Coat. Technol. 384, 125308 (2020)

    Google Scholar 

  44. M. Yu, G. Yu, B. Dai, Graphene fiber-based strain-insensitive wearable temperature sensor. IEEE Sens. Lett. 4(10), 1–4 (2020)

    Article  Google Scholar 

  45. N. Afsarimanesh, A. Nag, S. Sarkar, G.S. Sabet, T. Han, S.C. Mukhopadhyay, A review on fabrication, characterization and implementation of wearable strain sensors. Sen. Actuat. A Phys. 112355 (2020)

    Google Scholar 

  46. A. Mehmood et al., Graphene based nanomaterials for strain sensor application—a review. J. Environ. Chem. Eng. 8(3), 103743 (2020)

    Google Scholar 

  47. C.N.R. Rao, B. Satishkumar, A. Govindaraj, M. Nath, Nanotubes. ChemPhysChem 2(2), 78–105 (2001)

    Article  CAS  Google Scholar 

  48. M.S. Dresselhaus, G. Dresselhaus, P. Eklund, A. Rao, Carbon nanotubes, in The physics of fullerene-based and fullerene-related materials, pp. 331–379 (Springer, 2000)

    Google Scholar 

  49. F. Kim, J.H. Song, P. Yang, Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 124(48), 14316–14317 (2002)

    Article  CAS  Google Scholar 

  50. B.P. Khanal, E.R. Zubarev, Rings of nanorods. Angew. Chem. Int. Ed. 46(13), 2195–2198 (2007)

    Article  CAS  Google Scholar 

  51. C. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog. Solid State Chem. 31(1–2), 5–147 (2003)

    Article  CAS  Google Scholar 

  52. A.L. Briseno, S.C. Mannsfeld, S.A. Jenekhe, Z. Bao, Y. Xia, Introducing organic nanowire transistors. Mater. Today 11(4), 38–47 (2008)

    Article  CAS  Google Scholar 

  53. Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006)

    Article  CAS  Google Scholar 

  54. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009)

    Article  CAS  Google Scholar 

  55. V. Mohanraj, Y. Chen, Nanoparticles-a review. Trop. J. Pharm. Res. 5(1), 561–573 (2006)

    Google Scholar 

  56. S.G. Penn, L. He, M.J. Natan, Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 7(5), 609–615 (2003)

    Article  CAS  Google Scholar 

  57. L. Shi, V. De Paoli, N. Rosenzweig, Z. Rosenzweig, Synthesis and application of quantum dots FRET-based protease sensors. J. Am. Chem. Soc. 128(32), 10378–10379 (2006)

    Article  CAS  Google Scholar 

  58. M.F. Frasco, N. Chaniotakis, Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9(9), 7266–7286 (2009)

    Article  CAS  Google Scholar 

  59. I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)

    Article  Google Scholar 

  60. T. Han, A. Nag, S.C. Mukhopadhyay, Y. Xu, Carbon nanotubes and its gas-sensing applications: a review. Sens. Actuators, A Phys. 291, 107–143 (2019)

    Article  CAS  Google Scholar 

  61. L. Cai et al., Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci. Rep. 3(1), 1–9 (2013)

    Article  Google Scholar 

  62. A. Nag, A. Mitra, S.C. Mukhopadhyay, Graphene and its sensor-based applications: a review. Sens. Actuators, A Phys. 270, 177–194 (2018)

    Article  CAS  Google Scholar 

  63. S.-Y. Jeong, Y.-W. Ma, J.-U. Lee, G.-J. Je, B.-S. Shin, Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser. Sensors 19(22), 4867 (2019)

    Article  CAS  Google Scholar 

  64. S. Tadakaluru, W. Thongsuwan, P. Singjai, Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14(1), 868–876 (2014)

    Article  CAS  Google Scholar 

  65. S. Gong et al., Tattoolike polyaniline microparticle-doped gold nanowire patches as highly durable wearable sensors. ACS Appl. Mater. Interf. 7(35), 19700–19708 (2015)

    Article  CAS  Google Scholar 

  66. S. Gong et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5(1), 1–8 (2014)

    Article  CAS  Google Scholar 

  67. H. Lee, B. Seong, H. Moon, D. Byun, Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes. RSC Adv. 5(36), 28379–28384 (2015)

    Article  CAS  Google Scholar 

  68. S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4), 2345–2352 (2014)

    Article  CAS  Google Scholar 

  69. X. Meng, J. Yang, Z. Liu, W. Lu, Y. Sun, Y. Dai, Non-contact, fibrous cellulose acetate/aluminum flexible electronic-sensor for humidity detecting. Compos. Commun. (2020)

    Google Scholar 

  70. N. Ueno, M. Akiyama, K. Ikeda, H. Tateyama, A foil type flexible pressure sensor using nitelide aluminum thin film. Trans. Soc. Instr. Control Eng. 38(5), 427–432 (2002)

    Google Scholar 

  71. A. Alfadhel, J. Kosel, Magnetic nanocomposite cilia tactile sensor. Adv. Mater. 27(47), 7888–7892 (2015)

    Article  CAS  Google Scholar 

  72. M. Zhang et al., Fe3O4 nanowire arrays on flexible polypropylene substrates for UV and magnetic sensing. ACS Appl. Nano Mater. 1(10), 5742–5752 (2018)

    Article  CAS  Google Scholar 

  73. X. Xu et al., Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl. Mater. Interf. 9(16), 14273–14280 (2017)

    Article  CAS  Google Scholar 

  74. S. Zhang et al., A flexible bifunctional sensor based on porous copper nanowire@ IonGel composite films for high-resolution stress/deformation detection. J. Mater. Chem. C 8(12), 4081–4092 (2020)

    Article  CAS  Google Scholar 

  75. P. Jandera, Advances in the development of organic polymer monolithic columns and their applications in food analysis—a review. J. Chromatogr. A 1313, 37–53 (2013)

    Article  CAS  Google Scholar 

  76. S. Srivastava, R. Gadhave, Recent developments in Inorganic polymers: a review with focus on Si-Al based inorganic polymers. Orient. J. Chem. 31(4), 2475–2480 (2015)

    Article  CAS  Google Scholar 

  77. A.-M. Caminade, E. Hey-Hawkins, I. Manners, Smart inorganic polymers. Chem. Soc. Rev. 45(19), 5144–5146 (2016)

    Article  CAS  Google Scholar 

  78. A. Nag, S.C. Mukhopadhyay, J. Kosel, Tactile sensing from laser-ablated metallized PET films. IEEE Sens. J. 17(1), 7–13 (2016)

    Article  Google Scholar 

  79. U. Yaqoob, D.-T. Phan, A.I. Uddin, G.-S. Chung, Highly flexible room temperature NO2 sensor based on MWCNTs-WO3 nanoparticles hybrid on a PET substrate. Sens. Actuators, B Chem. 221, 760–768 (2015)

    Article  CAS  Google Scholar 

  80. L. Lamanna et al., Flexible and transparent aluminum-nitride-based surface-acoustic-wave device on polymeric polyethylene naphthalate. Adv. Electron. Mater. 5(6), 1900095 (2019)

    Article  CAS  Google Scholar 

  81. L. Wang et al., Flexible chemiresistor sensors: thin film assemblies of nanoparticles on a polyethylene terephthalate substrate. J. Mater. Chem. 20(5), 907–915 (2010)

    Article  CAS  Google Scholar 

  82. D. Shakthivel, N. Yogeswaran, R. Dahiya, Towards graphene based flexible force sensor, in 2017 IEEE SENSORS, pp. 1–3 (IEEE, 2017).

    Google Scholar 

  83. M.A. Hussein, M. Alam, A.M. Asiri, Z.M. Al-amshany, K.S. Hajeeassa, M.M. Rahman, Ultrasonic-assisted fabrication of polyvinyl chloride/mixed graphene-carbon nanotube nanocomposites as a selective Ag+ ionic sensor. J. Compos. Mater. 53(16), 2271–2284 (2019)

    Article  CAS  Google Scholar 

  84. X. Xiao et al., High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23(45), 5440–5444 (2011)

    Article  CAS  Google Scholar 

  85. Y. Ai et al., An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@ reduced graphene-oxide core–shell nanoparticles. J. Mater. Chem. C 6(20), 5514–5520 (2018)

    Article  CAS  Google Scholar 

  86. Y. Cao, W. Li, N. Sepúlveda, Performance of self-powered, water-resistant bending sensor using transverse piezoelectric effect of polypropylene ferroelectret polymer. IEEE Sens. J. 19(22), 10327–10335 (2019)

    Article  CAS  Google Scholar 

  87. J. Pastrana et al., Electrode effects on flexible and robust polypropylene ferroelectret devices for fully integrated energy harvesters. ACS Appl. Mater. Interf. 12(20), 22815–22824 (2020)

    Article  CAS  Google Scholar 

  88. Y. Huang et al., High-resolution flexible temperature sensor based graphite-filled polyethylene oxide and polyvinylidene fluoride composites for body temperature monitoring. Sens. Actuators, A Phys. 278, 1–10 (2018)

    Article  CAS  Google Scholar 

  89. S. Cai, X. Liu, J. Huang, Z. Liu, Feasibility of polyethylene film as both supporting material for transfer and target substrate for flexible strain sensor of CVD graphene grown on Cu foil. RSC Adv. 7(76), 48333–48340 (2017)

    Article  CAS  Google Scholar 

  90. K.F. Lei, K.-F. Lee, M.-Y. Lee, Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement. Microelectron. Eng. 99, 1–5 (2012)

    Article  CAS  Google Scholar 

  91. A. Nag, S. Mukhopadhyay, J. Kosel, Transparent biocompatible sensor patches for touch sensitive prosthetic limbs, in 2016 10th International Conference on Sensing Technology (ICST), pp. 1–6 (IEEE, 2016)

    Google Scholar 

  92. C. Bali, A. Brandlmaier, A. Ganster, O. Raab, J. Zapf, A. Hübler, Fully inkjet-printed flexible temperature sensors based on carbon and PEDOT: PSS. Mater. Today: Proc. 3(3), 739–745 (2016)

    Google Scholar 

  93. G. Latessa, F. Brunetti, A. Reale, G. Saggio, A. Di Carlo, Piezoresistive behaviour of flexible PEDOT: PSS based sensors. Sens. Actuators, B Chem. 139(2), 304–309 (2009)

    Article  CAS  Google Scholar 

  94. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)

    Article  CAS  Google Scholar 

  95. V. Dhand, K.Y. Rhee, H. Ju Kim, D. Ho Jung, A comprehensive review of graphene nanocomposites: research status and trends. J. Nanomater. (2013)

    Google Scholar 

  96. N.-J. Huang et al., Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons. RSC Adv. 7(36), 22045–22053 (2017)

    Article  CAS  Google Scholar 

  97. S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2014)

    Article  Google Scholar 

  98. L. Nayak, S. Mohanty, S.K. Nayak, A. Ramadoss, A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 7(29), 8771–8795 (2019)

    Article  CAS  Google Scholar 

  99. S. He, S. Feng, A. Nag, N. Afsarimanesh, T. Han, S.C. Mukhopadhyay, Recent progress in 3D printed mold-based sensors. Sensors 20(3), 703 (2020)

    Article  Google Scholar 

  100. C. Liu et al., 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin. Polymers 10(6), 629 (2018)

    Article  CAS  Google Scholar 

  101. N.T. Garland et al., Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl. Mater. Interf. 10(45), 39124–39133 (2018)

    Article  CAS  Google Scholar 

  102. H. Wang et al., Stamp-assisted gravure printing of micro-supercapacitors with general flexible substrates, in 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 950–953 (IEEE, 2019)

    Google Scholar 

  103. M. Bariya et al., Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano 12(7), 6978–6987 (2018)

    Article  CAS  Google Scholar 

  104. M. Knoll, C. Offenzeller, B. Mayrhofer, B. Jakoby, W. Hilber, A screen printed thermocouple-array on a flexible substrate for condition monitoring. Multidisc. Dig. Publish. Inst. Proc. 2(13), 803 (2018)

    Google Scholar 

  105. A. Abellán-Llobregat et al., A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens. Bioelectron. 91, 885–891 (2017)

    Article  CAS  Google Scholar 

  106. A. Moya, G. Gabriel, R. Villa, F.J. del Campo, Inkjet-printed electrochemical sensors. Curr. Opin. Electrochem. 3(1), 29–39 (2017)

    Article  CAS  Google Scholar 

  107. B. Andò, S. Baglio, A.R. Bulsara, T. Emery, V. Marletta, A. Pistorio, Low-cost inkjet printing technology for the rapid prototyping of transducers. Sensors 17(4), 748 (2017)

    Article  CAS  Google Scholar 

  108. N. Bai et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11(1), 1–9 (2020)

    Article  CAS  Google Scholar 

  109. M. Li, J. Liang, X. Wang, M. Zhang, Ultra-sensitive flexible pressure sensor based on microstructured electrode. Sensors 20(2), 371 (2020)

    Article  Google Scholar 

  110. M. Uz et al., Fabrication of high-resolution graphene-based flexible electronics via polymer casting. Sci. Rep. 9(1), 1–11 (2019)

    Article  CAS  Google Scholar 

  111. M. Xie, Y. Zhang, M.J. Kraśny, C. Bowen, H. Khanbareh, N. Gathercole, Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic–polymer composites. Energy Environ. Sci. 11(10), 2919–2927 (2018)

    Article  CAS  Google Scholar 

  112. R. Li et al., A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun. 11(1), 1–11 (2020)

    CAS  Google Scholar 

  113. Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Low-cost and flexible printed graphene–PEDOT: PSS gas sensor for ammonia detection. Org. Electron. 15(11), 2971–2981 (2014)

    Article  CAS  Google Scholar 

  114. B. Narakathu, S. Reddy, M. Atashbar, E. Rebrosova, M. Rebros, M. Joyce, A novel gravure printed impedance based flexible electrochemical sensor, in Sensors, 2011 IEEE, pp. 577–580 (IEEE, 2011).

    Google Scholar 

  115. A. Nag, M.E.E. Alahi, S. Feng, S.C. Mukhopadhyay, IoT-based sensing system for phosphate detection using Graphite/PDMS sensors. Sens. Actuators, A Phys. 286, 43–50 (2019)

    Article  CAS  Google Scholar 

  116. E. Aparicio-Martínez, A. Ibarra, I. A. Estrada-Moreno, V. Osuna, R.B. Dominguez, Flexible electrochemical sensor based on laser scribed Graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection. Sens. Actuators B Chem. 301, 127101 (2019)

    Google Scholar 

  117. X. Li et al., Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2, 870 (2012)

    Article  CAS  Google Scholar 

  118. A. Kaidarova et al., Wearable multifunctional printed graphene sensors. npj Flex. Electron. 3(1), 1–10 (2019)

    Google Scholar 

  119. M. Zhang, C. Wang, H. Wang, M. Jian, X. Hao, Y. Zhang, Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Func. Mater. 27(2), 1604795 (2017)

    Article  CAS  Google Scholar 

  120. X. Chen et al., Environmentally friendly flexible strain sensor from waste cotton fabrics and natural rubber latex. Polymers 11(3), 404 (2019)

    Article  CAS  Google Scholar 

  121. Y.-Q. Li, P. Huang, W.-B. Zhu, S.-Y. Fu, N. Hu, K. Liao, Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci. Rep. 7(1), 1–7 (2017)

    CAS  Google Scholar 

  122. A. Vilouras, H. Heidari, S. Gupta, R. Dahiya, Modeling of CMOS devices and circuits on flexible ultrathin chips. IEEE Trans. Electron. Dev. 64(5), 2038–2046 (2017)

    Article  CAS  Google Scholar 

  123. S. Chung, T. Lee, Towards flexible CMOS circuits. Nat. Nanotechnol. 15(1), 11–12 (2020)

    Article  CAS  Google Scholar 

  124. W. Honda, S. Harada, S. Ishida, T. Arie, S. Akita, K. Takei, High-performance, mechanically flexible, and vertically integrated 3d carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv. Mater. 27(32), 4674–4680 (2015)

    Article  CAS  Google Scholar 

  125. W. Honda, T. Arie, S. Akita, K. Takei, Inorganic material-based flexible CMOS circuit and optical sensor, in 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 1433–1435 (IEEE, 2015)

    Google Scholar 

  126. S. Gupta, N. Yogeswaran, F. Giacomozzi, L. Lorenzelli, R. Dahiya, Touch sensor based on flexible AlN piezocapacitor coupled with MOSFET. IEEE Sens. J. 20(13), 6810–6817 (2019)

    Article  Google Scholar 

  127. T. Qiu, N. Chen, K. Li, M. Atiquzzaman, W. Zhao, How can heterogeneous internet of things build our future: a survey. IEEE Commun. Surv. Tutor. 20(3), 2011–2027 (2018)

    Article  Google Scholar 

  128. S. Pal, M. Hitchens, V. Varadharajan, On the design of security mechanisms for the Internet of Things, in 2017 Eleventh International Conference on Sensing Technology (ICST), pp. 1–6 (IEEE, 2017)

    Google Scholar 

  129. Cisco: The zettabyte era: Trends and analysis. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

  130. Y.A. Qadri, A. Nauman, Y.B. Zikria, A.V. Vasilakos, S.W. Kim, The future of healthcare internet of things: a survey of emerging technologies. IEEE Commun. Surv. Tutor. 22(2), 1121–1167 (2020)

    Article  Google Scholar 

  131. W. Wang, J. Li, L. Wang, W. Zhao, The internet of things for resident health information service platform research, in IET International Conference on Communication Technology and Application (ICCTA 2011), pp. 631–635 (IET, 2011)

    Google Scholar 

  132. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Article  Google Scholar 

  133. M. Frustaci, P. Pace, G. Aloi, G. Fortino, Evaluating critical security issues of the IoT world: present and future challenges. IEEE Internet Things J. 5(4), 2483–2495 (2017)

    Article  Google Scholar 

  134. Y. Andaloussi, M.D. El Ouadghiri, Y. Maurel, J.-M. Bonnin, H. Chaoui, Access control in IoT environments: feasible scenarios. Proc. Comput. Sci. 130, 1031–1036 (2018)

    Article  Google Scholar 

  135. S. Pal, M. Hitchens, T. Rabehaja, S. Mukhopadhyay, Security requirements for the internet of things: a systematic approach. Sensors 20(20), 5897 (2020)

    Article  Google Scholar 

  136. S. Pal, M. Hitchens, V. Varadharajan, Access control for Internet of Things—enabled assistive technologies: an architecture, challenges and requirements, in Assistive Technology for the Elderly (Elsevier, 2020), pp. 1–43

    Google Scholar 

  137. S. He et al., IoT-based laser-inscribed sensors for detection of sulfate in water bodies. IEEE Access 8, 228879–228890 (2020)

    Article  Google Scholar 

  138. M. Ali, L. Albasha, H. Al-Nashash, A Bluetooth low energy implantable glucose monitoring system, in 2011 8th European Radar Conference, pp. 377–380 (IEEE, 2011)

    Google Scholar 

  139. Y. Cai, D. Cao, X. He, Q. Wang, Continuous glucose monitoring system based on smart phone. Proc. Eng. 29, 3894–3898 (2012)

    Article  CAS  Google Scholar 

  140. H. Gong et al., Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosens. Bioelectron. 169, 112567 (2020)

    Google Scholar 

  141. B. Yang, J. Kong, X. Fang, Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta 204, 685–692 (2019)

    Article  CAS  Google Scholar 

  142. K. Malhi, S.C. Mukhopadhyay, J. Schnepper, M. Haefke, H. Ewald, A zigbee-based wearable physiological parameters monitoring system. IEEE Sens. J. 12(3), 423–430 (2010)

    Article  Google Scholar 

  143. A. Kumar, G.P. Hancke, A zigbee-based animal health monitoring system. IEEE Sens. J. 15(1), 610–617 (2014)

    Article  Google Scholar 

  144. S. Pal, Limitations and approaches in access control and identity management for constrained IoT resources, in 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 431–432 (IEEE, 2019)

    Google Scholar 

  145. S. Pal, Internet of Things and Access Control: Sensing, Monitoring and Controlling Access in IoT-Enabled Healthcare Systems (Springer Nature, 2021)

    Google Scholar 

  146. D.E. Kouicem, A. Bouabdallah, H. Lakhlef, Internet of things security: a top-down survey. Comput. Netw. 141, 199–221 (2018)

    Article  Google Scholar 

  147. S. Pal, M. Hitchens, V. Varadharajan, IoT for wearable devices: access control and identity management. Wearable Sensors: Applications, Design and Implementation (2017), pp. 1–29

    Google Scholar 

  148. S. Pal, M. Hitchens, V. Varadharajan, Towards the design of a trust management framework for the Internet of Things, in 2019 13th International Conference on Sensing Technology (ICST), pp. 1–7 (IEEE, 2019)

    Google Scholar 

  149. Z. Bakhshi, A. Balador, J. Mustafa, Industrial IoT security threats and concerns by considering Cisco and Microsoft IoT reference models, in 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 173–178 (IEEE, 2018)

    Google Scholar 

  150. P. Sethi, S.R. Sarangi, Internet of things: architectures, protocols, and applications. J. Electr. Comput. Eng. 2017 (2017)

    Google Scholar 

  151. B. Anggorojati, P.N. Mahalle, N.R. Prasad, R. Prasad, Capability-based access control delegation model on the federated IoT network, in The 15th International Symposium on Wireless Personal Multimedia Communications, pp. 604–608 (IEEE, 2012)

    Google Scholar 

  152. O. Bello, S. Zeadally, M. Badra, Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Netw. 57, 52–62 (2017)

    Article  Google Scholar 

  153. A.A.N. Shirehjini, A. Semsar, Human interaction with IoT-based smart environments. Multimedia Tools Appl. 76(11), 13343–13365 (2017)

    Article  Google Scholar 

  154. M.A. El Khaddar, M. Boulmalf, Smartphone: the ultimate IoT and IoE device, in Smartphones from an Applied Research Perspective, vol. 137 (2017)

    Google Scholar 

  155. M.A. Jarwar, M.G. Kibria, S. Ali, I. Chong, Microservices in web objects enabled IoT environment for enhancing reusability. Sensors 18(2), 352 (2018)

    Article  Google Scholar 

  156. G. Suciu, A. Vulpe, S. Halunga, O. Fratu, G. Todoran, V. Suciu, Smart cities built on resilient cloud computing and secure internet of things, in 2013 19th International Conference on Control Systems and Computer Science, pp. 513–518 (IEEE, 2013)

    Google Scholar 

  157. E. Ever, F.M. Al-Turjman, H. Zahmatkesh, M. Riza, Modelling green HetNets in dynamic ultra large-scale applications: a case-study for femtocells in smart-cities. Comput. Netw. 128, 78–93 (2017)

    Article  Google Scholar 

  158. F.M. Al-Turjman, M. Imran, S.T. Bakhsh, Energy efficiency perspectives of femtocells in Internet of Things: recent advances and challenges. IEEE Access 5, 26808–26818 (2017)

    Article  Google Scholar 

  159. H. Chen, X. Jia, H. Li, A brief introduction to IoT gateway, in IET international conference on communication technology and application (ICCTA 2011), pp. 610–613 (IET, 2011)

    Google Scholar 

  160. S.K. Datta, C. Bonnet, N. Nikaein, An IoT gateway centric architecture to provide novel M2M services, in 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 514–519 (IEEE, 2014)

    Google Scholar 

Download references

Funding

This study was funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany's Excellence Strategy—EXC 2050/1—Project ID 390696704—Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Universität Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Nag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, S., Nag, A. (2022). Energy Harvesting in IoT-Enabled Flexible Sensors: Smart Sensing and Secure Access Control. In: Nag, A., Mukhopadhyay, S.C. (eds) Flexible Sensors for Energy-Harvesting Applications. Smart Sensors, Measurement and Instrumentation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-99600-0_9

Download citation

Publish with us

Policies and ethics