Skip to main content

Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2003))

Abstract

Surface plasmon resonance (SPR) is an established method for studying molecular interactions in real time. It allows obtaining qualitative and quantitative data on interactions of proteins with lipids or lipid membranes. In most of the approaches a lipid membrane or a membrane-mimetic surface is prepared on the surface of Biacore (GE Healthcare) sensor chips HPA or L1, and the studied protein is then injected across the surface. Here we provide an overview of SPR in protein–lipid and protein–membrane interactions, different approaches described in the literature and a general protocol for conducting an SPR experiment including lipid membranes, together with some experimental considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rich RL, Myszka DG (2010) Grading the commercial optical biosensor literature-class of 2008: ‘The Mighty Binders’. J Mol Recognit 23:1–64

    CAS  PubMed  Google Scholar 

  2. Rich RL, Myszka DG (2011) Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 24:892–914

    CAS  PubMed  Google Scholar 

  3. Schasfoort RBM (ed) (2017) Handbook of surface plasmon resonance. The Royal Society of Chemistry, Mabridge

    Google Scholar 

  4. de Mol NJ, Fischer MJE (eds) (2008) Surface plasmon resonance: methods and protocols. Humana Press, New York, NY

    Google Scholar 

  5. Beseničar M, Maček P, Lakey JH, Anderluh G (2006) Surface plasmon resonance in protein–membrane interactions. Chem Phys Lipids 141:169–178

    PubMed  Google Scholar 

  6. Cho W, Bittova L, Stahelin RV (2001) Membrane binding assays for peripheral proteins. Anal Biochem 296:153–161

    CAS  PubMed  Google Scholar 

  7. Cooper MA (2004) Advances in membrane receptor screening and analysis. J Mol Recognit 17:286–315

    CAS  PubMed  Google Scholar 

  8. Stahelin RV (2013) Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions. Mol Biol Cell 24:883–886

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stenberg E, Persson B, Roos H, Urbaniczky C (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143:513–526

    CAS  Google Scholar 

  10. Bakrač B, Gutiérrez-Aguirre I, Podlesek Z, Sonnen AF-P, Gilbert RJC, Maček P et al (2008) Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 283:18665–18677

    PubMed  Google Scholar 

  11. Bakrač B, Kladnik A, Maček P, McHaffie G, Werner A, Lakey JH et al (2010) A toxin-based probe reveals cytoplasmic exposure of golgi sphingomyelin. J Biol Chem 285:22186–22195

    PubMed  PubMed Central  Google Scholar 

  12. Lenarčič T, Albert I, Böhm H, Hodnik V, Pirc K, Zavec AB et al (2017) Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 358:1431–1434

    PubMed  Google Scholar 

  13. Mohri I, Taniike M, Okazaki I, Kagitani-Shimono K, Aritake K, Kanekiyo T et al (2006) Lipocalin-type prostaglandin D synthase is up-regulated in oligodendrocytes in lysosomal storage diseases and binds gangliosides: PGDS up-regulation in lysosomal storage disorders. J Neurochem 97:641–651

    CAS  PubMed  Google Scholar 

  14. Li H, Zhao X, Wang J, Dong Y, Meng S, Li R et al (2016) β-sitosterol interacts with pneumolysin to prevent Streptococcus pneumoniae infection. Sci Rep 5:17668

    Google Scholar 

  15. Beseničar MP, Anderluh G (2010) Preparation of lipid membrane surfaces for molecular interaction studies by surface plasmon resonance biosensors. Methods Mol Biol 627:191–200

    PubMed  Google Scholar 

  16. Cooper MA, Try AC, Carroll J, Ellar DJ, Williams DH (1998) Surface plasmon resonance analysis at a supported lipid monolayer. Biochim Biophys Acta 1373:101–111

    CAS  PubMed  Google Scholar 

  17. Cooper MA, Hansson A, Löfås S, Williams DH (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal Biochem 277:196–205

    CAS  PubMed  Google Scholar 

  18. Anderluh G, Beseničar M, Kladnik A, Lakey JH, Maček P (2005) Properties of nonfused liposomes immobilized on an L1 Biacore chip and their permeabilization by a eukaryotic pore-forming toxin. Anal Biochem 344:43–52

    CAS  PubMed  Google Scholar 

  19. Bavdek A, Gekara NO, Priselac D, Gutiérrez Aguirre I, Darji A, Chakraborty T et al (2007) Sterol and pH interdependence in the binding, oligomerization, and pore formation of listeriolysin. Biochemistry 46:4425–4437

    CAS  PubMed  Google Scholar 

  20. Myszka DG (1997) Kinetic analysis of macro molecular interactions using surface plasmon resonance biosensors. Anal Biotechnol 8:50–57

    CAS  Google Scholar 

  21. Stahelin RV, Cho W (2001) Differential roles of ionic, aliphatic, and aromatic residues in membrane–protein interactions: a surface plasmon resonance study on phospholipases A. Biochemistry 40:4672–4678

    CAS  PubMed  Google Scholar 

  22. Kostan J, Salzer U, Orlova A, Törö I, Hodnik V, Senju Y et al (2014) Direct interaction of actin filaments with F-BAR protein pacsin 2. EMBO Rep 15:1154–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shanmugham A, Wong Fong Sang HW, Bollen YJM, Lill H (2006) Membrane binding of twin arginine preproteins as an early step in translocation. Biochemistry 45:2243–2249

    CAS  PubMed  Google Scholar 

  24. Bahloul A, Michel V, Hardelin J-P, Nouaille S, Hoos S, Houdusse A et al (2010) Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 19:3557–3565

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hekman M, Albert S, Galmiche A, Rennefahrt UEE, Fueller J, Fischer A et al (2006) Reversible membrane interaction of BAD requires two C-terminal lipid binding domains in conjunction with 14-3-3 protein binding. J Biol Chem 281:17321–17336

    CAS  PubMed  Google Scholar 

  26. Locatelli-Hoops S, Remmel N, Klingenstein R, Breiden B, Rossocha M, Schoeniger M et al (2006) Saposin A mobilizes lipids from low cholesterol and high bis(monoacylglycerol)phosphate-containing membranes. J Biol Chem 281:32451–32460

    CAS  PubMed  Google Scholar 

  27. Sugiki T, Takahashi H, Nagasu M, Hanada K, Shimada I (2010) Real-time assay method of lipid extraction activity. Anal Biochem 399:162–167

    CAS  PubMed  Google Scholar 

  28. Beseničar MP, Bavdek A, Kladnik A, Maček P, Anderluh G (2008) Kinetics of cholesterol extraction from lipid membranes by methyl-β-cyclodextrin—a surface plasmon resonance approach. Biochim Biophys Acta 1778:175–184

    PubMed  Google Scholar 

  29. Praper T, Beseničar MP, Istinič H, Podlesek Z, Metkar SS, Froelich CJ et al (2010) Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH. Mol Immunol 47:2492–2504

    CAS  PubMed  Google Scholar 

  30. Saenko E, Sarafanov A, Ananyeva N, Behre E, Shima M, Schwinn H et al (2001) Comparison of the properties of phospholipid surfaces formed on HPA and L1 biosensor chips for the binding of the coagulation factor VIII. J Chromatogr 921:49–56

    CAS  Google Scholar 

  31. Papo N, Shai Y (2003) Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 42:458–466

    CAS  PubMed  Google Scholar 

  32. Karlsson OP, Löfås S (2002) Flow-mediated on-surface reconstitution of G-protein coupled receptors for applications in surface plasmon resonance biosensors. Anal Biochem 300:132–138

    CAS  PubMed  Google Scholar 

  33. Vidic JM, Grosclaude J, Persuy M-A, Aioun J, Salesse R, Pajot-Augy E (2006) Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip 6:1026–1032

    CAS  PubMed  Google Scholar 

  34. Brändén M, Tabaei SR, Fischer G, Neutze R, Höök F (2010) Refractive-index-based screening of membrane-protein-mediated transfer across biological membranes. Biophys J 99:124–133

    PubMed  PubMed Central  Google Scholar 

  35. Lundquist A, Hansen SB, Nordström H, Danielson UH, Edwards K (2010) Biotinylated lipid bilayer disks as model membranes for biosensor analyses. Anal Biochem 405:153–159

    CAS  PubMed  Google Scholar 

  36. Hosseinkhani B, van den Akker N, D’Haen J, Gagliardi M, Struys T, Lambrichts I et al (2017) Direct detection of nano-scale extracellular vesicles derived from inflammation-triggered endothelial cells using surface plasmon resonance. Nanomedicine 13:1663–1671

    CAS  PubMed  Google Scholar 

  37. Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R et al (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32(5):490–495

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu L, Wang K, Cui J, Liu H, Bu X, Ma H et al (2014) Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem 86:8857–8864

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Grasso L, Wyss R, Weidenauer L, Thampi A, Demurtas D, Prudent M et al (2015) Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem 407:5425–5432

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rupert DLM, Lässer C, Eldh M, Block S, Zhdanov VP, Lotvall JO et al (2014) Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem 86:5929–5936

    CAS  PubMed  Google Scholar 

  41. Grover Shah V, Ray S, Karlsson R, Srivastava S (2015) Calibration-free concentration analysis of protein biomarkers in human serum using surface plasmon resonance. Talanta 144:801–808

    CAS  PubMed  Google Scholar 

  42. Kobayashi M, Nishizawa M, Inoue N, Hosoya T, Yoshida M, Ukawa Y et al (2014) Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine. J Agric Food Chem 62:2881–2890

    CAS  PubMed  Google Scholar 

  43. Zimmermann K, Eells R, Heinrich F, Rintoul S, Josey B, Shekhar P et al (2017) The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer. J Biol Chem 292:17746–17759

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hodnik V, Anderluh G (2010) Capture of intact liposomes on biacore sensor chips for protein–membrane interaction studies. Methods Mol Biol 627:201–211

    CAS  PubMed  Google Scholar 

  45. Hall K, Aguilar MI (2010) Surface plasmon resonance spectroscopy for studying the membrane binding of antimicrobial peptides. Methods Mol Biol 627:213–223

    CAS  PubMed  Google Scholar 

  46. Hodgkin MN, Masson MR, Powner D, Saqib KM, Ponting CP, Wakelam MJO (2000) Phospholipase D regulation and localisation is dependent upon a phosphatidylinositol 4,5-bisphosphate-specific PH domain. Curr Biol 10:43–46

    CAS  PubMed  Google Scholar 

  47. Erb E-M, Chen X, Allen S, Roberts CJ, Tendler SJB, Davies MC et al (2000) Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Anal Biochem 280:29–35

    CAS  PubMed  Google Scholar 

  48. Marquês JT, de Almeida RFM, Viana AS (2014) Lipid bilayers supported on bare and modified gold – formation, characterization and relevance of lipid rafts. Electrochim Acta 126:139–150

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Slovenian Research Agency for the continuing support of the Infrastructural Centre for Molecular Interaction Analysis at the Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia (program grant number I0-0022) and for the support of the program grant “Molecular interactions” (grant number P1-0391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Anderluh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Šakanovič, A., Hodnik, V., Anderluh, G. (2019). Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 2003. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9512-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9512-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9511-0

  • Online ISBN: 978-1-4939-9512-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics