Skip to main content

Chordomas and Chondrosarcomas of the Posterior Fossa

  • Chapter
  • First Online:
Contemporary Skull Base Surgery

Abstract

Skull base chordomas and chondrosarcomas are rare bone neoplasms that develop around the clivus and the petroclival region. Although they are quite similar in terms of clinical and radiological features, chordomas and chondrosarcomas differ with regard to their origin and prognosis.

The optimal treatment for skull base chordomas and high-grade chondrosarcomas includes radical surgical resection followed by high-dose radiotherapy. Because of chordomas and chondrosarcomas rarity and complex location, the surgical management of these lesions should be carried out exclusively by expert skull base teams. Providing a unique trajectory to the clivus, the endoscopic endonasal approach has considerably changed the surgical management of posterior fossa chordomas and chondrosarcomas in the last two decades. However, limitations remain, and transcranial approaches remain the best adjunct for complex lesions extending beyond the limits of what can be safely achieved with endoscopic techniques. Endoscopically assisted transcranial approaches have also made possible to widen the exposure of classic transcranial approach and to reduce the aggressiveness of the approach. For chordomas, radical resection, including infiltrated bone, remains the goal, as it is the most important prognostic factor. Skull base chondrosarcomas carry a more favorable outcome than chordomas with a better long-term control. Conversely, despite aggressive treatment, chordomas have a high rate of recurrence. The development of medical targeted therapies is strongly needed to improve the outcome of patients with advanced disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sbaihat A, Bacciu A, Pasanisi E, Sanna M. Skull base chondrosarcomas: surgical treatment and results. Ann Otol Rhinol Laryngol. 2013;122:763–70. https://doi.org/10.1177/000348941312201206.

    Article  PubMed  Google Scholar 

  2. Stacchiotti S, Sommer J, Chordoma Global Consensus Group. Building a global consensus approach to chordoma: a position paper from the medical and patient community. Lancet Oncol. 2015;16:e71–83. https://doi.org/10.1016/S1470-2045(14)71190-8.

    Article  PubMed  Google Scholar 

  3. Alahmari M, Temel Y. Skull base chordoma treated with proton therapy: a systematic review. Surg Neurol Int. 2019;10:96. https://doi.org/10.25259/SNI-213-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weber DC, Murray F, Combescure C, Calugaru V, Alapetite C, Albertini F, et al. Long term outcome of skull-base chondrosarcoma patients treated with high-dose proton therapy with or without conventional radiation therapy. Radiother Oncol. 2018;129:520–6. https://doi.org/10.1016/j.radonc.2018.06.040.

    Article  PubMed  Google Scholar 

  5. Simon F, Feuvret L, Bresson D, Guichard J-P, El Zein S, Bernat A-L, et al. Surgery and protontherapy in Grade I and II skull base chondrosarcoma: a comparative retrospective study. PLoS One. 2018;13:e0208786. https://doi.org/10.1371/journal.pone.0208786.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang L, Wu Z, Tian K, Wang K, Li D, Ma J, et al. Clinical features and surgical outcomes of patients with skull base chordoma: a retrospective analysis of 238 patients. J Neurosurg. 2017;127:1257–67. https://doi.org/10.3171/2016.9.JNS16559.

    Article  PubMed  Google Scholar 

  7. Oishi Y, Tamura R, Takahashi S, Morimoto Y, Sato M, Horikoshi T, et al. A comparative study between traditional microscopic surgeries and endoscopic endonasal surgery for skull base chordomas. World Neurosurg. 2020;134:e1099–107. https://doi.org/10.1016/j.wneu.2019.11.113.

    Article  Google Scholar 

  8. Ditzel Filho LFS, Prevedello DM, Dolci RL, Jamshidi AO, Kerr EE, Campbell R, et al. The endoscopic endonasal approach for removal of petroclival chondrosarcomas. Neurosurg Clin N Am. 2015;26:453–62. https://doi.org/10.1016/j.nec.2015.03.008.

    Article  PubMed  Google Scholar 

  9. Bossi Todeschini A, Montaser AS, Hardesty DA, Carrau RL, Prevedello DM. The limits of the endoscopic endonasal transclival approach for posterior fossa tumors. J Neurosurg Sci. 2018;62:322–31. https://doi.org/10.23736/S0390-5616.18.04411-9.

    Article  PubMed  Google Scholar 

  10. Diaz RJ, Cusimano MD. The biological basis for modern treatment of chordoma. J Neuro-Oncol. 2011;104:411–22. https://doi.org/10.1007/s11060-011-0559-8.

    Article  Google Scholar 

  11. Italiano A, Mir O, Cioffi A, Palmerini E, Piperno-Neumann S, Perrin C, et al. Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol. 2013;24:2916–22. https://doi.org/10.1093/annonc/mdt374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sahyouni R, Goshtasbi K, Mahmoodi A, Chen JW. A historical recount of chordoma. J Neurosurg Spine. 2018;28:422–8. https://doi.org/10.3171/2017.7.SPINE17668.

    Article  PubMed  Google Scholar 

  13. Yakkioui Y, van Overbeeke JJ, Santegoeds R, van Engeland M, Temel Y. Chordoma: the entity. Biochim Biophys Acta. 1846;2014:655–69. https://doi.org/10.1016/j.bbcan.2014.07.012.

    Article  CAS  Google Scholar 

  14. Stewart MJ, Burrow J l F. Ecchordosis physaliphora spheno-occipitalis. J Neurol Psychopathol. 1923;4:218–20. https://doi.org/10.1136/jnnp.s1-4.15.218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mott FW. Chondrosarcoma springing from the sella turcica. Arch Neurol Psychiatry. 1899;1:432–3.

    Google Scholar 

  16. Chow WA. Chondrosarcoma: biology, genetics, and epigenetics. F1000Res. 2018;7. https://doi.org/10.12688/f1000research.15953.1.

  17. Güneş M, Günaldi O, Tuğcu B, Tanriverdi O, Güler AK, Cöllüoğlu B. Intracranial chondrosarcoma: a case report and review of the literature. Minim Invasive Neurosurg. 2009;52:238–41. https://doi.org/10.1055/s-0028-1128117.

    Article  PubMed  Google Scholar 

  18. Oruckaptan HH, Berker M, Soylemezoglu F, Ozcan OE. Parafalcine chondrosarcoma: an unusual localization for a classical variant. Case report and review of the literature. Surg Neurol. 2001;55:174–9. https://doi.org/10.1016/s0090-3019(01)00329-9.

    Article  CAS  PubMed  Google Scholar 

  19. Chandler JP, Yashar P, Laskin WB, Russell EJ. Intracranial chondrosarcoma: a case report and review of the literature. J Neuro-Oncol. 2004;68:33–9. https://doi.org/10.1023/b:neon.0000024728.72998.7d.

    Article  Google Scholar 

  20. Almefty K, Pravdenkova S, Colli BO, Al-Mefty O, Gokden M. Chordoma and chondrosarcoma: similar, but quite different, skull base tumors. Cancer. 2007;110:2457–67. https://doi.org/10.1002/cncr.23073.

    Article  PubMed  Google Scholar 

  21. Ferreira RM, Vieira L, Pimenta S, Pinto J, Costa L. Chondrosarcoma as inaugural manifestation of monostotic Paget’s disease of bone. Acta Reumatol Port. 2019;44:163–4.

    PubMed  Google Scholar 

  22. Oushy S, Peris-Celda M, Van Gompel JJ. Skull base enchondroma and chondrosarcoma in Ollier disease and Maffucci syndrome. World Neurosurg. 2019;130:e356–61. https://doi.org/10.1016/j.wneu.2019.06.087.

    Article  PubMed  Google Scholar 

  23. Tachibana E, Saito K, Takahashi M, Fukuta K, Yoshida J. Surgical treatment of a massive chondrosarcoma in the skull base associated with Maffucci’s syndrome: a case report. Surg Neurol. 2000;54:165–9; discussion 169–70. https://doi.org/10.1016/s0090-3019(00)00252-4.

    Article  CAS  PubMed  Google Scholar 

  24. Dorfman HD, Czerniak B. Bone cancers. Cancer. 1995;75:203–10. https://doi.org/10.1002/1097-0142(19950101)75:1+<203::aid-cncr2820751308>3.0.co;2-v.

    Article  CAS  PubMed  Google Scholar 

  25. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control. 2001;12:1–11.

    Article  CAS  PubMed  Google Scholar 

  26. Mukherjee D, Chaichana KL, Adogwa O, Gokaslan Z, Aaronson O, Cheng JS, et al. Association of extent of local tumor invasion and survival in patients with malignant primary osseous spinal neoplasms from the surveillance, epidemiology, and end results (SEER) database. World Neurosurg. 2011;76:580–5. https://doi.org/10.1016/j.wneu.2011.05.016.

    Article  PubMed  Google Scholar 

  27. George B, Bresson D, Bouazza S, Froelich S, Mandonnet E, Hamdi S, et al. Chordoma. Neurochirurgie. 2014;60:63–140. https://doi.org/10.1016/j.neuchi.2014.02.003.

    Article  CAS  PubMed  Google Scholar 

  28. Cianfriglia F, Pompili A, Occhipinti E. Intracranial malignant cartilaginous tumours. Report of two cases and review of literature. Acta Neurochir. 1978;45:163–75. https://doi.org/10.1007/BF01774391.

    Article  CAS  PubMed  Google Scholar 

  29. Korten AG, ter Berg HJ, Spincemaille GH, van der Laan RT, Van de Wel AM. Intracranial chondrosarcoma: review of the literature and report of 15 cases. J Neurol Neurosurg Psychiatry. 1998;65:88–92. https://doi.org/10.1136/jnnp.65.1.88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hung YP, Diaz-Perez JA, Cote GM, Wejde J, Schwab JH, Nardi V, et al. Dedifferentiated chordoma: clinicopathologic and molecular characteristics with integrative analysis. Am J Surg Pathol. 2020;44:1213–23. https://doi.org/10.1097/PAS.0000000000001501.

    Article  PubMed  Google Scholar 

  31. Shih AR, Cote GM, Chebib I, Choy E, DeLaney T, Deshpande V, et al. Clinicopathologic characteristics of poorly differentiated chordoma. Mod Pathol. 2018;31:1237–45. https://doi.org/10.1038/s41379-018-0002-1.

    Article  CAS  PubMed  Google Scholar 

  32. Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev. 2019;33:936–59. https://doi.org/10.1101/gad.326066.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Romeo S, Hogendoorn PCW. Brachyury and chordoma: the chondroid-chordoid dilemma resolved? J Pathol. 2006;209:143–6. https://doi.org/10.1002/path.1987.

    Article  CAS  PubMed  Google Scholar 

  34. Vrionis FD. Chordomas and chondrosarcomas of the skull base and spine. Neuro-Oncology. 2004;6:166–7. https://doi.org/10.1215/S1152851703200065.

    Article  PubMed Central  Google Scholar 

  35. Suster D, Hung YP, Nielsen GP. Differential diagnosis of cartilaginous lesions of bone. Arch Pathol Lab Med. 2020;144:71–82. https://doi.org/10.5858/arpa.2019-0441-RA.

    Article  CAS  PubMed  Google Scholar 

  36. Fletcher CDM. The evolving classification of soft tissue tumours – an update based on the new 2013 WHO classification. Histopathology. 2014;64:2–11. https://doi.org/10.1111/his.12267.

    Article  PubMed  Google Scholar 

  37. Gay E, Sekhar LN, Rubinstein E, Wright DC, Sen C, Janecka IP, et al. Chordomas and chondrosarcomas of the cranial base: results and follow-up of 60 patients. Neurosurgery. 1995;36:887–96; discussion 896–7. https://doi.org/10.1227/00006123-199505000-00001.

    Article  CAS  PubMed  Google Scholar 

  38. Heffelfinger MJ, Dahlin DC, MacCarty CS, Beabout JW. Chordomas and cartilaginous tumors at the skull base. Cancer. 1973;32:410–20. https://doi.org/10.1002/1097-0142(197308)32:2<410::aid-cncr2820320219>3.0.co;2-s.

    Article  CAS  PubMed  Google Scholar 

  39. Yeom KW, Lober RM, Mobley BC, Harsh G, Vogel H, Allagio R, et al. Diffusion-weighted MRI: distinction of skull base chordoma from chondrosarcoma. AJNR Am J Neuroradiol. 2013;34:1056–61, S1. https://doi.org/10.3174/ajnr.A3333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kremenevski N, Schlaffer S-M, Coras R, Kinfe TM, Graillon T, Buchfelder M. Skull base chordomas and chondrosarcomas. Neuroendocrinology. 2020;110:836–47. https://doi.org/10.1159/000509386.

    Article  CAS  PubMed  Google Scholar 

  41. Bakker SH, Jacobs WCH, Pondaag W, Gelderblom H, Nout RA, Dijkstra PDS, et al. Chordoma: a systematic review of the epidemiology and clinical prognostic factors predicting progression-free and overall survival. Eur Spine J. 2018;27:3043–58. https://doi.org/10.1007/s00586-018-5764-0.

    Article  CAS  PubMed  Google Scholar 

  42. Di Maio S, Temkin N, Ramanathan D, Sekhar LN. Current comprehensive management of cranial base chordomas: 10-year meta-analysis of observational studies. J Neurosurg. 2011;115:1094–105. https://doi.org/10.3171/2011.7.JNS11355.

    Article  PubMed  Google Scholar 

  43. Tauziède-Espariat A, Bresson D, Polivka M, Bouazza S, Labrousse F, Aronica E, et al. Prognostic and therapeutic markers in chordomas: a study of 287 tumors. J Neuropathol Exp Neurol. 2016;75:111–20. https://doi.org/10.1093/jnen/nlv010.

    Article  CAS  PubMed  Google Scholar 

  44. Zhai Y, Bai J, Li M, Wang S, Li C, Wei X, et al. A nomogram to predict the progression-free survival of clival chordoma. J Neurosurg. 2019:1–9. https://doi.org/10.3171/2019.10.JNS192414.

  45. Sakai K, Hongo K, Tanaka Y, Nakayama J. Analysis of immunohistochemical expression of p53 and the proliferation marker Ki-67 antigen in skull base chordomas: relationships between their expression and prognosis. Brain Tumor Pathol. 2007;24:57–62. https://doi.org/10.1007/s10014-007-0222-4.

    Article  CAS  PubMed  Google Scholar 

  46. Yeter HG, Kosemehmetoglu K, Soylemezoglu F. Poorly differentiated chordoma: review of 53 cases. APMIS. 2019;127:607–15. https://doi.org/10.1111/apm.12978.

    Article  PubMed  Google Scholar 

  47. Champagne P-O, Passeri T, Jabre R, Bernat A-L, Voormolen EH, Froelich S. Vertebrobasilar artery encasement by skull base chordomas: surgical outcome and management strategies. Oper Neurosurg (Hagerstown). 2020. https://doi.org/10.1093/ons/opaa091.

  48. Passeri T, di Russo P, Champagne P-O, Bernat A-L, Cartailler J, Guichard JP et al. Tumor growth rate as a new predictor of progression-free survival after chordoma surgery. Neurosurgery. 2021;89(2):291–9. https://doi.org/10.1093/neuros/nyab164. PMID: 33989415.

  49. Chambers PW, Schwinn CP. Chordoma. A clinicopathologic study of metastasis. Am J Clin Pathol. 1979;72:765–76. https://doi.org/10.1093/ajcp/72.5.765.

    Article  CAS  PubMed  Google Scholar 

  50. Raza SM, Gidley PW, Meis JM, Grosshans DR, Bell D, DeMonte F. Multimodality treatment of skull base chondrosarcomas: the role of histology specific treatment protocols. Neurosurgery. 2017;81:520–30. https://doi.org/10.1093/neuros/nyx042.

    Article  PubMed  Google Scholar 

  51. Bloch OG, Jian BJ, Yang I, Han SJ, Aranda D, Ahn BJ, et al. Cranial chondrosarcoma and recurrence. Skull Base. 2010;20:149–56. https://doi.org/10.1055/s-0029-1246218.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bloch OG, Jian BJ, Yang I, Han SJ, Aranda D, Ahn BJ, et al. A systematic review of intracranial chondrosarcoma and survival. J Clin Neurosci. 2009;16:1547–51. https://doi.org/10.1016/j.jocn.2009.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bohman L-E, Koch M, Bailey RL, Alonso-Basanta M, Lee JYK. Skull base chordoma and chondrosarcoma: influence of clinical and demographic factors on prognosis: a SEER analysis. World Neurosurg. 2014;82:806–14. https://doi.org/10.1016/j.wneu.2014.07.005.

    Article  PubMed  Google Scholar 

  54. Edem I, DeMonte F, Raza SM. Advances in the management of primary bone sarcomas of the skull base. J Neuro-Oncol. 2020;150:393–403. https://doi.org/10.1007/s11060-020-03497-6.

    Article  Google Scholar 

  55. Zanoletti E, Mazzoni A, Martini A, Abbritti RV, Albertini R, Alexandre E, et al. Surgery of the lateral skull base: a 50-year endeavour. Acta Otorhinolaryngol Ital. 2019;39:S1–146. https://doi.org/10.14639/0392-100X-suppl.1-39-2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Freeman JL, DeMonte F, Al-Holou W, Gidley PW, Hanna EY, Kupferman ME, et al. Impact of early access to multidisciplinary care on treatment outcomes in patients with skull base chordoma. Acta Neurochir. 2018;160:731–40. https://doi.org/10.1007/s00701-017-3409-4.

    Article  PubMed  Google Scholar 

  57. Al-Mefty O, Borba LAB. Skull base chordomas: a management challenge. J Neurosurg. 1997;86:182–9. https://doi.org/10.3171/jns.1997.86.2.0182.

    Article  CAS  PubMed  Google Scholar 

  58. Rhoton AL. The cerebellar arteries. Neurosurgery. 2000;47:S29–68. https://doi.org/10.1097/00006123-200009001-00010.

    Article  PubMed  Google Scholar 

  59. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus. 2005;19:E4.

    PubMed  Google Scholar 

  60. Fernandez-Miranda JC, Gardner PA, Snyderman CH, Devaney KO, Mendenhall WM, Suárez C, et al. Clival chordomas: a pathological, surgical, and radiotherapeutic review. Head Neck. 2014;36:892–906. https://doi.org/10.1002/hed.23415.

    Article  PubMed  Google Scholar 

  61. Cebula H, Kurbanov A, Zimmer LA, Poczos P, Leach JL, De Battista JC, et al. Endoscopic, endonasal variability in the anatomy of the internal carotid artery. World Neurosurg. 2014;82:e759–64. https://doi.org/10.1016/j.wneu.2014.09.021.

    Article  PubMed  Google Scholar 

  62. Komotar RJ, Starke RM, Raper DMS, Anand VK, Schwartz TH. The endoscope-assisted ventral approach compared with open microscope-assisted surgery for clival chordomas. World Neurosurg. 2011;76:318–27; discussion 259–62. https://doi.org/10.1016/j.wneu.2011.02.026.

    Article  PubMed  Google Scholar 

  63. Jho HD, Alfieri A. Endoscopic endonasal pituitary surgery: evolution of surgical technique and equipment in 150 operations. Minim Invasive Neurosurg. 2001;44:1–12. https://doi.org/10.1055/s-2001-13590.

    Article  CAS  PubMed  Google Scholar 

  64. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurg Focus. 2005;19:E3.

    PubMed  Google Scholar 

  65. Little AS, Kelly D, Milligan J, Griffiths C, Prevedello DM, Carrau RL, et al. Predictors of sinonasal quality of life and nasal morbidity after fully endoscopic transsphenoidal surgery. J Neurosurg. 2015;122:1458–65. https://doi.org/10.3171/2014.10.JNS141624.

    Article  PubMed  Google Scholar 

  66. Cappabianca P, Cavallo LM, Colao A, de Divitiis E. Surgical complications associated with the endoscopic endonasal transsphenoidal approach for pituitary adenomas. J Neurosurg. 2002;97:293–8. https://doi.org/10.3171/jns.2002.97.2.0293.

    Article  PubMed  Google Scholar 

  67. Gallagher MJ, Durnford AJ, Wahab SS, Nair S, Rokade A, Mathad N. Patient-reported nasal morbidity following endoscopic endonasal skull base surgery. Br J Neurosurg. 2014;28:622–5. https://doi.org/10.3109/02688697.2014.887656.

    Article  PubMed  Google Scholar 

  68. Thompson CF, Suh JD, Liu Y, Bergsneider M, Wang MB. Modifications to the endoscopic approach for anterior skull base lesions improve postoperative sinonasal symptoms. J Neurol Surg B Skull Base. 2014;75:65–72. https://doi.org/10.1055/s-0033-1356492.

    Article  PubMed  Google Scholar 

  69. Labidi M, Watanabe K, Hanakita S, Park HH, Bouazza S, Bernat A-L, et al. The chopsticks technique for endoscopic endonasal surgery-improving surgical efficiency and reducing the surgical footprint. World Neurosurg. 2018;117:208–20. https://doi.org/10.1016/j.wneu.2018.05.229.

    Article  PubMed  Google Scholar 

  70. Shin M, Kondo K, Kin T, Suzukawa K, Saito N. Endoscopic transnasal interseptal approach for invasive clival tumors: development of an approach method regarding maximal preservation of the nasal anatomy. Neurol Med Chir (Tokyo). 2015;55:336–44. https://doi.org/10.2176/nmc.oa.2014-0280.

    Article  PubMed  Google Scholar 

  71. Wang EW, Zanation AM, Gardner PA, Schwartz TH, Eloy JA, Adappa ND, et al. ICAR: endoscopic skull-base surgery. Int Forum Allergy Rhinol. 2019;9:S145–365. https://doi.org/10.1002/alr.22326.

    Article  PubMed  Google Scholar 

  72. Hannan CJ, Kelleher E, Javadpour M. Methods of skull base repair following endoscopic endonasal tumor resection: a review. Front Oncol. 2020;10:1614. https://doi.org/10.3389/fonc.2020.01614.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Harvey RJ, Parmar P, Sacks R, Zanation AM. Endoscopic skull base reconstruction of large dural defects: a systematic review of published evidence. Laryngoscope. 2012;122:452–9. https://doi.org/10.1002/lary.22475.

    Article  PubMed  Google Scholar 

  74. Kassam AB, Thomas A, Carrau RL, Snyderman CH, Vescan A, Prevedello D, et al. Endoscopic reconstruction of the cranial base using a pedicled nasoseptal flap. Neurosurgery. 2008;63:ONS44–52; discussion ONS52–53. https://doi.org/10.1227/01.neu.0000297074.13423.f5.

    Article  PubMed  Google Scholar 

  75. Simal-Julián JA, Miranda-Lloret P, Pérez de San Román Mena L, Sanromán-Álvarez P, García-Piñero A, Sanchis-Martín R, et al. Impact of multilayer vascularized reconstruction after skull base endoscopic endonasal approaches. J Neurol Surg B Skull Base. 2020;81:128–35. https://doi.org/10.1055/s-0039-1677705.

    Article  PubMed  Google Scholar 

  76. Garcia-Navarro V, Anand VK, Schwartz TH. Gasket seal closure for extended endonasal endoscopic skull base surgery: efficacy in a large case series. World Neurosurg. 2013;80:563–8. https://doi.org/10.1016/j.wneu.2011.08.034.

    Article  PubMed  Google Scholar 

  77. Luginbuhl AJ, Campbell PG, Evans J, Rosen M. Endoscopic repair of high-flow cranial base defects using a bilayer button. Laryngoscope. 2010;120:876–80. https://doi.org/10.1002/lary.20861.

    Article  PubMed  Google Scholar 

  78. Cavallo LM, Solari D, Somma T, Cappabianca P. The 3F (fat, flap, and flash) technique for skull base reconstruction after endoscopic endonasal suprasellar approach. World Neurosurg. 2019;126:439–46. https://doi.org/10.1016/j.wneu.2019.03.125.

    Article  PubMed  Google Scholar 

  79. Rivera-Serrano CM, Snyderman CH, Gardner P, Prevedello D, Wheless S, Kassam AB, et al. Nasoseptal “rescue” flap: a novel modification of the nasoseptal flap technique for pituitary surgery. Laryngoscope. 2011;121:990–3. https://doi.org/10.1002/lary.21419.

    Article  PubMed  Google Scholar 

  80. Caicedo-Granados E, Carrau R, Snyderman CH, Prevedello D, Fernandez-Miranda J, Gardner P, et al. Reverse rotation flap for reconstruction of donor site after vascular pedicled nasoseptal flap in skull base surgery. Laryngoscope. 2010;120:1550–2. https://doi.org/10.1002/lary.20975.

    Article  PubMed  Google Scholar 

  81. Yoo F, Kuan EC, Bergsneider M, Wang MB. Free mucosal graft reconstruction of the septum after nasoseptal flap harvest: a novel technique using a posterior septal free mucosal graft. J Neurol Surg B Skull Base. 2017;78:201–6. https://doi.org/10.1055/s-0036-1597086.

    Article  PubMed  Google Scholar 

  82. Thomas R, Girishan S, Chacko AG. Endoscopic transmaxillary transposition of temporalis flap for recurrent cerebrospinal fluid leak closure. J Neurol Surg B Skull Base. 2016;77:445–8. https://doi.org/10.1055/s-0036-1581065.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fava A, di Russo P, Tardivo V, Passeri T, Câmara B, Penet N, et al. Endoscope-assisted far-lateral transcondylar approach for craniocervical junction chordomas: a retrospective case series and cadaveric dissection. J Neurosurg. 2021:1–12. https://doi.org/10.3171/2020.9.JNS202611.

  84. Bruneau M, Cornelius JF, George B. Anterolateral approach to the V1 segment of the vertebral artery. Neurosurgery. 2006;58:ONS-215–9; discussion ONS-219. https://doi.org/10.1227/01.NEU.0000204650.35289.3E.

    Article  Google Scholar 

  85. Bruneau M, George B. The juxtacondylar approach to the jugular foramen. Neurosurgery. 2008;62:75–8; discussion 80–1. https://doi.org/10.1227/01.neu.0000317375.38067.55.

    Article  PubMed  Google Scholar 

  86. Di Carlo DT, Voormolen EH, Passeri T, Champagne P-O, Penet N, Bernat AL, et al. Hybrid antero-lateral transcondylar approach to the clivus: a laboratory investigation and case illustration. Acta Neurochir. 2020;162:1259–68. https://doi.org/10.1007/s00701-020-04343-4.

    Article  PubMed  Google Scholar 

  87. Vishteh AG, Crawford NR, Melton MS, Spetzler RF, Sonntag VK, Dickman CA. Stability of the craniovertebral junction after unilateral occipital condyle resection: a biomechanical study. J Neurosurg. 1999;90:91–8. https://doi.org/10.3171/spi.1999.90.1.0091.

    Article  CAS  PubMed  Google Scholar 

  88. Shiban E, Török E, Wostrack M, Meyer B, Lehmberg J. The far-lateral approach: destruction of the condyle does not necessarily result in clinically evident craniovertebral junction instability. J Neurosurg. 2016;125:196–201. https://doi.org/10.3171/2015.5.JNS15176.

    Article  PubMed  Google Scholar 

  89. Champagne P-O, Voormolen EH, Mammar H, Bernat A-L, Krichen W, Penet N, et al. Delayed instrumentation following removal of cranio-vertebral junction chordomas: a technical note. J Neurol Surg B Skull Base. 2020;81:694–700. https://doi.org/10.1055/s-0039-1694053.

    Article  PubMed  Google Scholar 

  90. Nevelsky A, Borzov E, Daniel S, Bar-Deroma R. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution. J Appl Clin Med Phys. 2017;18:62–8. https://doi.org/10.1002/acm2.12046.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Komotar RJ, Starke RM, Raper DMS, Anand VK, Schwartz TH. Endoscopic skull base surgery: a comprehensive comparison with open transcranial approaches. Br J Neurosurg. 2012;26:637–48. https://doi.org/10.3109/02688697.2012.654837.

    Article  PubMed  Google Scholar 

  92. Spiessberger A, Baumann F, Stauffer A, Marbacher S, Kothbauer KF, Fandino J, et al. Extended exposure of the petroclival junction: the combined anterior transpetrosal and subtemporal/transcavernous approach. Surg Neurol Int. 2018;9:259. https://doi.org/10.4103/sni.sni_298_18.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Muto J, Prevedello DM, Ditzel Filho LFS, Tang IP, Oyama K, Kerr EE, et al. Comparative analysis of the anterior transpetrosal approach with the endoscopic endonasal approach to the petroclival region. J Neurosurg. 2016;125:1171–86. https://doi.org/10.3171/2015.8.JNS15302.

    Article  PubMed  Google Scholar 

  94. Koechlin NO, Simmen D, Briner HR, Reisch R. Combined transnasal and transcranial removal of a giant clival chordoma. J Neurol Surg Rep. 2014;75:e98–102. https://doi.org/10.1055/s-0034-1373668.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ares C, Hug EB, Lomax AJ, Bolsi A, Timmermann B, Rutz HP, et al. Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: first long-term report. Int J Radiat Oncol Biol Phys. 2009;75:1111–8. https://doi.org/10.1016/j.ijrobp.2008.12.055.

    Article  PubMed  Google Scholar 

  96. Sahgal A, Chan MW, Atenafu EG, Masson-Cote L, Bahl G, Yu E, et al. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: preliminary outcomes. Neuro-Oncology. 2015;17:889–94. https://doi.org/10.1093/neuonc/nou347.

    Article  CAS  PubMed  Google Scholar 

  97. Kano H, Sheehan J, Sneed PK, McBride HL, Young B, Duma C, et al. Skull base chondrosarcoma radiosurgery: report of the North American Gamma Knife Consortium. J Neurosurg. 2015;123:1268–75. https://doi.org/10.3171/2014.12.JNS132580.

    Article  PubMed  Google Scholar 

  98. Schulz-Ertner D, Tsujii H. Particle radiation therapy using proton and heavier ion beams. J Clin Oncol. 2007;25:953–64. https://doi.org/10.1200/JCO.2006.09.7816.

    Article  PubMed  Google Scholar 

  99. Williams D, Ford C. Carbon ion beam therapy for chordoma: a review of clinical effectiveness, cost-effectiveness, and guidelines. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2018.

    Google Scholar 

  100. Frezza AM, Botta L, Trama A, Dei Tos AP, Stacchiotti S. Chordoma: update on disease, epidemiology, biology and medical therapies. Curr Opin Oncol. 2019;31:114–20. https://doi.org/10.1097/CCO.0000000000000502.

    Article  PubMed  Google Scholar 

  101. Colia V, Stacchiotti S. Medical treatment of advanced chordomas. Eur J Cancer. 2017;83:220–8. https://doi.org/10.1016/j.ejca.2017.06.038.

    Article  PubMed  Google Scholar 

  102. Stacchiotti S, Longhi A, Ferraresi V, Grignani G, Comandone A, Stupp R, et al. Phase II study of imatinib in advanced chordoma. J Clin Oncol. 2012;30:914–20. https://doi.org/10.1200/JCO.2011.35.3656.

    Article  CAS  PubMed  Google Scholar 

  103. Stacchiotti S, Tamborini E, Lo Vullo S, Bozzi F, Messina A, Morosi C, et al. Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann Oncol. 2013;24:1931–6. https://doi.org/10.1093/annonc/mdt117.

    Article  CAS  PubMed  Google Scholar 

  104. Stacchiotti S, Gronchi A, Fossati P, Akiyama T, Alapetite C, Baumann M, et al. Best practices for the management of local-regional recurrent chordoma: a position paper by the Chordoma Global Consensus Group. Ann Oncol. 2017;28:1230–42. https://doi.org/10.1093/annonc/mdx054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hindi N, Casali PG, Morosi C, Messina A, Palassini E, Pilotti S, et al. Imatinib in advanced chordoma: a retrospective case series analysis. Eur J Cancer. 2015;51:2609–14. https://doi.org/10.1016/j.ejca.2015.07.038.

    Article  CAS  PubMed  Google Scholar 

  106. George S, Merriam P, Maki RG, Van den Abbeele AD, Yap JT, Akhurst T, et al. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol. 2009;27:3154–60. https://doi.org/10.1200/JCO.2008.20.9890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bompas E, Le Cesne A, Tresch-Bruneel E, Lebellec L, Laurence V, Collard O, et al. Sorafenib in patients with locally advanced and metastatic chordomas: a phase II trial of the French Sarcoma Group (GSF/GETO). Ann Oncol. 2015;26:2168–73. https://doi.org/10.1093/annonc/mdv300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Migliorini D, Mach N, Aguiar D, Vernet R, Landis BN, Becker M, et al. First report of clinical responses to immunotherapy in 3 relapsing cases of chordoma after failure of standard therapies. Onco Targets Ther. 2017;6:e1338235. https://doi.org/10.1080/2162402X.2017.1338235.

    Article  Google Scholar 

  109. Heery CR, Singh BH, Rauckhorst M, Marté JL, Donahue RN, Grenga I, et al. Phase I trial of a yeast-based therapeutic cancer vaccine (GI-6301) targeting the transcription factor brachyury. Cancer Immunol Res. 2015;3:1248–56. https://doi.org/10.1158/2326-6066.CIR-15-0119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Passeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Passeri, T. et al. (2022). Chordomas and Chondrosarcomas of the Posterior Fossa. In: Youssef, A.S. (eds) Contemporary Skull Base Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-99321-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99321-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99320-7

  • Online ISBN: 978-3-030-99321-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics