Skip to main content

Deep Learning on Side-Channel Analysis

  • Chapter
  • First Online:
Security and Artificial Intelligence

Abstract

This chapter provides an overview of recent applications of deep learning to profiled side-channel analysis (SCA). The advent of deep neural networks (mainly multiple layer perceptrons and convolutional neural networks) as a learning algorithm for profiled SCA opened several new directions and possibilities to explore the occurrence of side-channel leakages from different categories of systems. This is particularly important for designers to verify to what extent an adversary can extract sensitive information when possessing state-of-the-art attack methods. Deep learning is a fast-evolving technology that provides several advantages in profiled SCA and we summarize what are the main directions and results obtained by the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  2. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_1

    Chapter  Google Scholar 

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS One 10(7), e0130140 (2015)

    Google Scholar 

  4. Bergstra, J., Bardenet, R., Kégl, B., Bengio, Y.: Algorithms for hyper-parameter optimization, December 2011

    Google Scholar 

  5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  7. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - Profiling Attacks Without Preprocessing. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  8. Carbone, M., et al.: Deep learning to evaluate secure RSA implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 132–161 (2019). https://doi.org/10.13154/tches.v2019.i2.132-161, https://tches.iacr.org/index.php/TCHES/article/view/7388

  9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  11. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17

    Chapter  Google Scholar 

  12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, 1st edn. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

    Book  MATH  Google Scholar 

  13. Fan, G., Zhou, Y., Zhang, H., Feng, D.: How to choose interesting points for template attacks more effectively? In: Yung, M., Zhu, L., Yang, Y. (eds.) INTRUST 2014. LNCS, vol. 9473, pp. 168–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27998-5_11

    Chapter  Google Scholar 

  14. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication’’ method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15

    Chapter  MATH  Google Scholar 

  15. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649 (2013)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

  17. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using convolutional neural networks with domain knowledge. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 479–498. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7_22

    Chapter  Google Scholar 

  18. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution methods for leakage analysis and symmetric key recovery. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 645–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_26

    Chapter  Google Scholar 

  19. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: unleashing the power of convolutional neural networks for profiled side-channel analysis. Cryptology ePrint Archive, Report 2018/1023 (2018). https://eprint.iacr.org/2018/1023

  20. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 148–179 (2019)

    Google Scholar 

  21. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Article  MathSciNet  Google Scholar 

  22. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  23. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 25 (2012). https://doi.org/10.1145/3065386

  24. Kwon, D., Kim, H., Hong, S.: Improving non-profiled side-channel attacks using autoencoder based preprocessing (2020)

    Google Scholar 

  25. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2

    Chapter  Google Scholar 

  26. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  27. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Advances in Information Security, Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  28. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural network. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 94–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_7

    Chapter  Google Scholar 

  29. Martinasek, Z., Malina, L., Trasy, K.: Profiling power analysis attack based on multi-layer perceptron network. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds.) Computational Problems in Science and Engineering. LNEE, vol. 343, pp. 317–339. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15765-8_18

    Chapter  Google Scholar 

  30. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general characterization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 145–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_9

    Chapter  Google Scholar 

  31. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31, http://dl.acm.org/citation.cfm?id=18262.25413

  32. Mirchevska, V., Luštrek, M., Gams, M.: Combining domain knowledge and machine learning for robust fall detection. Expert. Syst. 31(2), 163–175 (2014)

    Article  Google Scholar 

  33. Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: rapid alignment method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8_17

    Chapter  Google Scholar 

  34. Perin, G., Chmielewski, L., Batina, L., Picek, S.: Keep it unsupervised: horizontal attacks meet deep learning. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1), 343–372 (2021). https://doi.org/10.46586/tches.v2021.i1.343-372

  35. Perin, G., Chmielewski, Ł., Picek, S.: Strength in numbers: improving generalization with ensembles in machine learning-based profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 337–364 (2020). https://doi.org/10.13154/tches.v2020.i4.337-364, https://tches.iacr.org/index.php/TCHES/article/view/8686

  36. Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-channel analysis. IACR Cryptol. ePrint Arch. 2020, 977 (2020). https://eprint.iacr.org/2020/977

  37. Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted attacker framework. IACR Cryptol. ePrint Arch. 2019, 168 (2019). https://eprint.iacr.org/2019/168

  38. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019). https://doi.org/10.13154/tches.v2019.i1.209-237

  39. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

    Chapter  Google Scholar 

  40. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ascad database. Cryptology ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

  41. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342, http://doi.acm.org/10.1145/359340.359342

  42. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  43. Shu, H., Zhu, H.: Sensitivity analysis of deep neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4943–4950 (2019). https://doi.org/10.1609/aaai.v33i01.33014943, http://dx.doi.org/10.1609/aaai.v33i01.33014943

  44. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. Preprint, December 2013

    Google Scholar 

  45. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, September 2014

  46. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

  47. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  48. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision, June 2016. https://doi.org/10.1109/CVPR.2016.308

  49. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. arXiv preprint arXiv:1703.00395 (2017)

  50. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 107–131 (2019). https://doi.org/10.13154/tches.v2019.i2.107-131

  51. van der Valk, D., Picek, S., Bhasin, S.: Kilroy was here: the first step towards explainability of neural networks in profiled side-channel analysis. IACR Cryptol. ePrint Arch. 2019, 1477 (2019). https://eprint.iacr.org/2019/1477

  52. Wang, D., Mao, K., Ng, G.W.: Convolutional neural networks and multimodal fusion for text aided image classification. In: 2017 20th International Conference on Information Fusion (Fusion), pp. 1–7. IEEE (2017)

    Google Scholar 

  53. Wegener, F., Moos, T., Moradi, A.: DL-LA: deep learning leakage assessment: a modern roadmap for SCA evaluations. IACR Cryptol. ePrint Arch. 2019, 505 (2019)

    Google Scholar 

  54. Weissbart, L., Picek, S., Batina, L.: One trace is all it takes: machine learning-based side-channel attack on EdDSA. In: Bhasin, S., Mendelson, A., Nandi, M. (eds.) SPACE 2019. LNCS, vol. 11947, pp. 86–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35869-3_8

    Chapter  Google Scholar 

  55. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 104–119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_8

    Chapter  Google Scholar 

  56. Wu, L., Picek, S.: Remove some noise: on pre-processing of side-channel measurements with autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 389–415 (2020). https://doi.org/10.13154/tches.v2020.i4.389-415

  57. Yang, G., Li, H., Ming, J., Zhou, Y.: Convolutional neural network based side-channel attacks in time-frequency representations. In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp. 1–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2_1

    Chapter  Google Scholar 

  58. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embedd. Syst. 2020(1), 1–36 (2019)

    Google Scholar 

  59. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  60. Zhang, J., Zheng, M., Nan, J., Hu, H., Yu, N.: A novel evaluation metric for deep learning-based side channel analysis and its extended application to imbalanced data. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 73–96 (2020). https://doi.org/10.13154/tches.v2020.i3.73-96

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Chmielewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krček, M. et al. (2022). Deep Learning on Side-Channel Analysis. In: Batina, L., Bäck, T., Buhan, I., Picek, S. (eds) Security and Artificial Intelligence. Lecture Notes in Computer Science, vol 13049. Springer, Cham. https://doi.org/10.1007/978-3-030-98795-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98795-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98794-7

  • Online ISBN: 978-3-030-98795-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics