Skip to main content

On the Performance of Convolutional Neural Networks for Side-Channel Analysis

  • Conference paper
  • First Online:
Security, Privacy, and Applied Cryptography Engineering (SPACE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11348))

Abstract

In this work, we ask a question whether Convolutional Neural Networks are more suitable for side-channel attacks than some other machine learning techniques and if yes, in what situations. Our results point that Convolutional Neural Networks indeed outperform machine learning in several scenarios when considering accuracy. Still, often there is no compelling reason to use such a complex technique. In fact, if comparing techniques without extra steps like preprocessing, we see an obvious advantage for Convolutional Neural Networks when the level of noise is small, and the number of measurements and features is high. The other tested settings show that simpler machine learning techniques, for a significantly lower computational cost, perform similarly or sometimes even better. The experiments with guessing entropy indicate that methods like Random Forest or XGBoost could perform better than Convolutional Neural Networks for the datasets we investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronen, E., Shamir, A., Weingarten, A., O’Flynn, C.: IoT goes nuclear: creating a ZigBee chain reaction. In: IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 195–212. IEEE Computer Society (2017)

    Google Scholar 

  2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  3. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 55–74. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_4

    Chapter  MATH  Google Scholar 

  4. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2

    Chapter  Google Scholar 

  5. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_3

    Chapter  Google Scholar 

  6. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17

    Chapter  Google Scholar 

  7. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)

    MATH  Google Scholar 

  8. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_18

    Chapter  Google Scholar 

  9. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1, 293–302 (2011). https://doi.org/10.1007/s13389-011-0023-x

    Article  Google Scholar 

  10. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach based on machine learning. Int. J. Appl. Cryptol. 3(2), 97–115 (2014)

    Article  MathSciNet  Google Scholar 

  11. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES: reaching the limit of side-channel attacks with a learning model. J. Cryptogr. Eng. 5(2), 123–139 (2015)

    Article  Google Scholar 

  12. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_5

    Chapter  Google Scholar 

  13. Picek, S., Heuser, A., Guilley, S.: Template attack versus Bayes classifier. J. Cryptogr. Eng. 7(4), 343–351 (2017)

    Article  Google Scholar 

  14. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 106–111, May 2015

    Google Scholar 

  15. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Lightweight ciphers and their side-channel resilience. IEEE Trans. Comput. PP(99), 1 (2017)

    Article  Google Scholar 

  16. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel analysis of lightweight ciphers: does lightweight equal easy? In: Hancke, G.P., Markantonakis, K. (eds.) RFIDSec 2016. LNCS, vol. 10155, pp. 91–104. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62024-4_7

    Chapter  Google Scholar 

  17. Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective. In: 2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, 14–19 May 2017, pp. 4095–4102 (2017)

    Google Scholar 

  18. Picek, S., Heuser, A., Jovic, A., Legay, A.: Climbing down the hierarchy: hierarchical classification for machine learning side-channel attacks. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 61–78. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57339-7_4

    Chapter  Google Scholar 

  19. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  20. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  21. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  22. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

  23. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)

    Article  Google Scholar 

  24. Bellman, R.E.: Dynamic Programming. Dover Publications, Incorporated, Mineola (2003)

    MATH  Google Scholar 

  25. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    Article  Google Scholar 

  26. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  Google Scholar 

  27. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2), 131–163 (1997)

    Article  Google Scholar 

  28. Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 23. ACM, New York (2004)

    Google Scholar 

  29. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2000)

    Article  MathSciNet  Google Scholar 

  30. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. CoRR abs/1603.02754 (2016)

    Google Scholar 

  31. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  32. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10 (1995)

    Google Scholar 

  33. Van Den Oord, A., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  34. Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T.: Neural Network Design. Martin Hagan (2014)

    Google Scholar 

  35. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  36. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  37. TELECOM ParisTech SEN research group: DPA Contest, 4th edn (2013–2014). http://www.DPAcontest.org/v4/

  38. TELECOM ParisTech SEN research group: DPA Contest, 2nd edn (2009–2010). http://www.DPAcontest.org/v2/

  39. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 156–170. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_12

    Chapter  MATH  Google Scholar 

  40. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. STS, vol. 103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  41. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. arXiv preprint arXiv:1706.02515 (2017)

  42. Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 8(1), 25 (2007)

    Article  Google Scholar 

  43. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  44. Timon, B.: Non-profiled deep learning-based side-channel attacks. Cryptology ePrint Archive, Report 2018/196 (2018). https://eprint.iacr.org/2018/196

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivam Bhasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A. (2018). On the Performance of Convolutional Neural Networks for Side-Channel Analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2018. Lecture Notes in Computer Science(), vol 11348. Springer, Cham. https://doi.org/10.1007/978-3-030-05072-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05072-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05071-9

  • Online ISBN: 978-3-030-05072-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics