Skip to main content

The Vasopressin V1A Receptor and Aggression

Challenges and potential novel treatments

  • Living reference work entry
  • First Online:
Handbook of Anger, Aggression, and Violence
  • 103 Accesses

Abstract

Despite the high prevalence of abnormal aggressive behavior across numerous psychological disorders, there is a lack of targeted and efficacious therapeutics. This book chapter examines the translational potential of the vasopressin 1a receptor (V1aR) as a novel therapeutic target for the treatment of pathological aggression. We aim to synthesize the literature to provide an overview of the circumstances under which an agonist or antagonist of the V1aR might be expected to decrease aggression. Specifically, we examine the impact of increased compared to decreased V1aR activity on aggressive behavior, with a particular focus on unraveling the key factors which might influence the effects of the V1aR on aggressive behavior, such as the type and context of aggression. We identify that, in addition to previously identified factors, whether the aggression being examined is normal or abnormal appears to play a key role in moderating the effect of brain-wide V1aR activation on aggression. Specifically, agonism of the V1aR appears to either increase or have no effect on normal non-maternal aggression, whereas it tends to inhibit abnormal non-maternal aggression. It is possible that changes in V1aR circuits in the context of abnormal aggression render the net impact of brain-wide activation of V1aR on abnormal aggression inhibitory. We discuss the future research that is required to explore these factors further and the key challenges that need to be overcome to facilitate drug discovery and clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADHD:

Attention deficit hyperactivity disorder

AH:

Anterior hypothalamus

ASD:

Autism spectrum disorder

AVP:

Arginine vasopressin

BNST:

Bed nucleus of the stria terminalis

BOLD:

Blood oxygen level dependent

CeA:

Central amygdala

CNS:

Central nervous system

CSF:

Cerebral spinal fluid

DG:

Dentate gyrus

DRN:

Doral raphe nuclei

HAA:

Hypothalamic attack area

HAB:

High anxiety behavior

ICV:

Intracerebroventricular

IED:

Intermittent explosive disorder

IP:

Intraperitoneal

LAB:

Low anxiety behavior

LH:

Lateral hypothalamus

LS:

Lateral septum

mPOA:

Medial preoptic area

NAB:

Not selectively bred for anxiety behavior

OXT:

Oxytocin

OXTR:

Oxytocin receptor

SC:

Subcutaneous

SON:

Supraoptic nucleus

V1aR:

Vasopressin V1a receptor

V1bR:

Vasopressin V1b receptor

V2R:

Vasopressin V2 receptor

References

  • Albers HE (2015) Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol 36:49–71

    Article  PubMed  Google Scholar 

  • Albers HE, Dean A, Karom MC, Smith D, Huhman KL (2006) Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. Brain Res 1073:425–430

    Article  PubMed  Google Scholar 

  • Albert DJ, Chew GL (1980) The septal forebrain and the inhibitory modulation of attack and defense in the rat. A review. Behav Neural Biol 30(4):357–388

    Article  PubMed  Google Scholar 

  • Baguley IJ, Cooper J, Felmingham K (2006) Aggressive behavior following traumatic brain injury: how common is common? J Head Trauma Rehabil 21(1):45–56

    Article  PubMed  Google Scholar 

  • Beiderbeck DI, Neumann ID, Veenema AH (2007) Differences in intermale aggression are accompanied by opposite vasopressin release patterns within the septum in rats bred for low and high anxiety. Eur J Neurosci 26(12):3597–3605

    Article  PubMed  Google Scholar 

  • Beiderbeck DI, Reber SO, Havasi A, Bredewold R, Veenema AH, Neumann ID (2012) High and abnormal forms of aggression in rats with extremes in trait anxiety – involvement of the dopamine system in the nucleus accumbens. Psychoneuroendocrinology 37(12):1969–1980

    Article  PubMed  Google Scholar 

  • Bester-Meredith JK, Martin PA, Marler CA (2005) Manipulations of vasopressin alter aggression differently across testing conditions in monogamous and nonmonogamous Peromyscus mice. Aggress Behav 31(2):189–199

    Article  Google Scholar 

  • Blanchard RJ, Blanchard CD (1977) Aggressive behavior in the rat. Behav Biol 21(2):197–224

    Article  PubMed  Google Scholar 

  • Blanchard RJ, Griebel G, Farrokhi C, Markham C, Yang M, Blanchard DC (2005) AVP V1b selective antagonist SSR149415 blocks aggressive behaviors in hamsters. Pharmacol Biochem Behav 80(1):189–194

    Article  PubMed  Google Scholar 

  • Bolognani F, Del Valle Rubido M, Squassante L, Wandel C, Derks M, Murtagh L, Sevigny J, Khwaja O, Umbricht D, Fontoura P (2019) A phase 2 clinical trial of a vasopressin V1a receptor antagonist shows improved adaptive behaviors in men with autism spectrum disorder. Sci Transl Med 11(491):eaat7838

    Article  PubMed  Google Scholar 

  • Bosch OJ (2013) Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence. Philos Trans R Soc Lond Ser B Biol Sci 368(1631):20130085

    Article  Google Scholar 

  • Bosch OJ, Neumann ID (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 61(3):293–303

    Article  PubMed  Google Scholar 

  • Bosch OJ, Pfortsch J, Beiderbeck DI, Landgraf R, Neumann ID (2010) Maternal behaviour is associated with vasopressin release in the medial preoptic area and bed nucleus of the stria terminalis in the rat. J Neuroendocrinol 22(5):420–429

    Article  PubMed  Google Scholar 

  • Bowen MT, McGregor IS (2014) Oxytocin and vasopressin modulate the social response to threat: a preclinical study. Int J Neuropsychopharmacol 17(10):1621–1633

    Article  PubMed  Google Scholar 

  • Bowen MT, Hari Dass SA, Booth J, Suraev A, Vyas A, McGregor IS (2014) Active coping toward predatory stress is associated with lower corticosterone and progesterone plasma levels and decreased methylation in the medial amygdala vasopressin system. Horm Behav 66(3):561–566

    Article  PubMed  Google Scholar 

  • Brain P (1975) What does individual housing mean to a mouse? Life Sci 16(2):187–200

    Article  PubMed  Google Scholar 

  • Caldwell HK, Albers HE (2004) Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Horm Behav 46(4):444–449

    Article  PubMed  Google Scholar 

  • Caughey SD, Klampfl SM, Bishop VR, Pfoertsch J, Neumann ID, Bosch OJ, Meddle SL (2011) Changes in the intensity of maternal aggression and central oxytocin and vasopressin V1a receptors across the peripartum period in the rat. J Neuroendocrinol 23(11):1113–1124

    Article  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Hauger RL, Cooper TB, Ferris CF (1998) Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch Gen Psychiatry 55(8):708–714

    Article  PubMed  Google Scholar 

  • Connor DF (2002) Aggression and antisocial behavior in children and adolescents: research and treatment. Guilford Press

    Google Scholar 

  • Cooper MA, Karom M, Huhman KL, Elliott Albers H (2005) Repeated agonistic encounters in hamsters modulate AVP V1a receptor binding. Horm Behav 48(5):545–551

    Article  PubMed  Google Scholar 

  • de Boer SF, Olivier B, Veening J, Koolhaas JM (2015) The neurobiology of offensive aggression: revealing a modular view [Article]. Physiol Behav 146:111–127

    Article  PubMed  Google Scholar 

  • de Oliveira VEM, Neumann ID, de Jong TR (2019) Post-weaning social isolation exacerbates aggression in both sexes and affects the vasopressin and oxytocin system in a sex-specific manner. Neuropharmacology

    Book  Google Scholar 

  • de Oliveira VEM, Lukas M, Wolf HN, Durante E, Lorenz A, Mayer A-L, Bludau A, Bosch OJ, Grinevich V, Egger V, de Jong TR, Neumann ID (2021) Oxytocin and vasopressin within the ventral and dorsal lateral septum modulate aggression in female rats. Nat Commun 12(1):2900

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLeon KR, Grimes JM, Melloni RH Jr (2002) Repeated anabolic-androgenic steroid treatment during adolescence increases vasopressin V1A receptor binding in Syrian hamsters: correlation with offensive aggression. Horm Behav 42(2):182–191

    Article  PubMed  Google Scholar 

  • Delville Y, Mansour KM, Ferris CF (1996) Serotonin blocks vasopressin-facilitated offensive aggression: interactions within the ventrolateral hypothalamus of golden hamsters. Physiol Behav 59(4–5):813–816

    Article  PubMed  Google Scholar 

  • Falkner AL, Lin D (2014) Recent advances in understanding the role of the hypothalamic circuit during aggression [Review]. Front Syst Neurosci 8

    Google Scholar 

  • Fanning JR, Coleman M, Lee R, Coccaro EF (2019) Subtypes of aggression in intermittent explosive disorder. J Psychiatr Res 109:164–172

    Article  PubMed  Google Scholar 

  • Ferris CF (2008) Functional magnetic resonance imaging and the neurobiology of vasopressin and oxytocin. Progr Brain Res 170:305–320

    Article  Google Scholar 

  • Ferris CF, Potegal M (1988) Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav 44(2):235–239

    Article  PubMed  Google Scholar 

  • Ferris CF, Melloni RH Jr, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters [Article]. J Neurosci 17(11):4331–4340

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferris CF, Stolberg T, Delville Y (1999) Serotonin regulation of aggressive behavior in male golden hamsters (Mesocricetus auratus). Behav Neurosci 113(4):804–815

    Article  PubMed  Google Scholar 

  • Ferris CF, Lu SF, Messenger T, Guillon CD, Heindel N, Miller M, Koppel G, Bruns FR, Simon NG (2006) Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacol Biochem Behav 83(2):169–174

    Article  PubMed  Google Scholar 

  • Gobrogge KL, Liu Y, Young LJ, Wang ZX (2009) Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. Proc Natl Acad Sci U S A 106(45):19144–19149

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobrogge KL, Jia X, Liu Y, Wang Z (2017) Neurochemical mediation of affiliation and aggression associated with pair-bonding. Biol Psychiatry 81(3):231–242

    Article  PubMed  Google Scholar 

  • Godwin J, Thompson R (2012) Nonapeptides and social behavior in fishes. Horm Behav 61(3):230–238

    Article  PubMed  Google Scholar 

  • Guastella AJ, Kenyon AR, Alvares GA, Carson DS, Hickie IB (2010) Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol Psychiatry 67(12):1220–1222

    Article  PubMed  Google Scholar 

  • Gutzler SJ, Karom M, Erwin WD, Albers HE (2010) Arginine-vasopressin and the regulation of aggression in female Syrian hamsters (Mesocricetus auratus). Eur J Neurosci 31(9):1655–1663

    PubMed  Google Scholar 

  • Halász J, Liposits Z, Meelis W, Kruk MR, Haller J (2002) Hypothalamic attack area-mediated activation of the forebrain in aggression. Neuroreport 13(10):1267–1270

    Article  PubMed  Google Scholar 

  • Haller J, Kruk MR (2006) Normal and abnormal aggression: human disorders and novel laboratory models. Neurosci Biobehav Rev 30(3):292–303

    Article  PubMed  Google Scholar 

  • Heilbron N, Prinstein MJ (2008) A review and reconceptualization of social aggression: adaptive and maladaptive correlates. Clin Child Fam Psychol Rev 11(4):176–217

    Article  PubMed  Google Scholar 

  • Hollander E, Jacob S, Jou R, McNamara N, Sikich L, Tobe R, Smith J, Sanders K, Squassante L, Murtagh L, Gleissl T, Wandel C, Veenstra-VanderWeele J (2022) Balovaptan vs placebo for social communication in childhood autism spectrum disorder: A randomized clinical trial. JAMA Psychiat 79(8):760–769

    Article  Google Scholar 

  • Huntingford FA (1976) The relationship between anti-predator behaviour and aggression among conspecifics in the three-spined stickleback, Gasterosteus Aculeatus. Anim Behav 24(2):245–260

    Article  Google Scholar 

  • Iozzino L, Ferrari C, Large M, Nielssen O, de Girolamo G (2015) Prevalence and risk factors of violence by psychiatric acute inpatients: a systematic review and meta-analysis. PLoS One 10(6):e0128536

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacob S, Veenstra-VanderWeele J, Murphy D, McCracken J, Smith J, Sanders K, Meyenberg C, Wiese T, Deol-Bhullar G, Wandel C, Ashford E, Anagnostou E (2022) Efficacy and safety of balovaptan for socialisation and communication difficulties in autistic adults in North America and Europe: a phase 3, randomised, placebo-controlled trial. Lancet Psychiatry 9(3):199–210

    Article  PubMed  Google Scholar 

  • Kanne SM, Mazurek MO (2011) Aggression in children and adolescents with ASD: prevalence and risk factors. J Autism Dev Disord 41(7):926–937

    Article  PubMed  Google Scholar 

  • Kawada A, Nagasawa M, Murata A, Mogi K, Watanabe K, Kikusui T, Kameda T (2019) Vasopressin enhances human preemptive strike in both males and females. Sci Rep 9(1):9664

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler RC, Coccaro EF, Fava M, Jaeger S, Jin R, Walters E (2006) The prevalence and correlates of DSM-IV intermittent explosive disorder in the National Comorbidity Survey Replication. JAMA Psychiat 63(6):669–678

    Google Scholar 

  • Koike H, Ibi D, Mizoguchi H, Nagai T, Nitta A, Takuma K, Nabeshima T, Yoneda Y, Yamada K (2009) Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav Brain Res 202(1):114–121

    Article  PubMed  Google Scholar 

  • Koolhaas JM, Coppens CM, de Boer SF, Buwalda B, Meerlo P, Timmermans PJA (2013) The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp 77:e4367

    Google Scholar 

  • Koshimizu T, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92(4):1813–1864

    Article  PubMed  Google Scholar 

  • Lee RJ, Coccaro EF, Cremers H, McCarron R, Lu SF, Brownstein MJ, Simon NG (2013) A novel V1a receptor antagonist blocks vasopressin-induced changes in the CNS response to emotional stimuli: an fMRI study. Front Syst Neurosci 7:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebsch G, Montkowski A, Holsboer F, Landgraf R (1998) Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav Brain Res 94(2):301–310

    Article  PubMed  Google Scholar 

  • Liu J, Lewis G, Evans L (2013) Understanding aggressive behaviour across the lifespan. J Psychiatr Ment Health Nurs 20(2):156–168

    Article  PubMed  Google Scholar 

  • Lund M (1975) Social mechanisms and social structure in rats and mice. Ecol Bull 19:255–260

    Google Scholar 

  • Malick JB, Barnett A (1976) The role of serotonergic pathways in isolation-induced aggression in mice. Pharmacol Biochem Behav 5(1):55–61

    Article  PubMed  Google Scholar 

  • Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24(4):609–628

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazurek MO, Kanne SM, Wodka EL (2013) Physical aggression in children and adolescents with autism spectrum disorders. Res Autism Spectr Disord 7(3):455–465

    Article  Google Scholar 

  • McDonald MM, Markham CM, Norvelle A, Albers HE, Huhman KL (2012) GABAA receptor activation in the lateral septum reduces the expression of conditioned defeat and increases aggression in Syrian hamsters. Brain Res 1439:27–33

    Article  PubMed  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125(1):167–181

    Article  PubMed  Google Scholar 

  • Miczek KA, de Boer SF, Haller J (2013) Excessive aggression as model of violence: a critical evaluation of current preclinical methods. Psychopharmacology 226(3):445–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Moons WG, Way BM, Taylor SE (2014) Oxytocin and vasopressin receptor polymorphisms interact with circulating neuropeptides to predict human emotional reactions to stress. Emotion 14(3):562–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison TR, Melloni RH, Jr (2014) The role of serotonin, vasopressin, and serotonin/vasopressin interactions in aggressive behavior. In: Current topics in behavioral neurosciences (Vol. 17, pp. 189–228). Springer Verlag

    Google Scholar 

  • Morrison TR, Ricci LA, Melloni RH (2016) Vasopressin differentially modulates aggression and anxiety in adolescent hamsters administered anabolic steroids. Horm Behav 86:55–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nat Rev Neurosci 8(7):536–546

    Article  PubMed  Google Scholar 

  • Nephew BC, Bridges RS (2008) Central actions of arginine vasopressin and a V1a receptor antagonist on maternal aggression, maternal behavior, and grooming in lactating rats. Pharmacol Biochem Behav 91(1):77–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Nephew BC, Byrnes EM, Bridges RS (2010) Vasopressin mediates enhanced offspring protection in multiparous rats. Neuropharmacology 58(1):102–106

    Article  PubMed  Google Scholar 

  • Numan M (2015) Chapter 3 - Aggressive behavior. In: Numan M (ed) Neurobiology of social behavior. Academic Press, pp 63–107

    Google Scholar 

  • Olivier B, Young LJ (2002) Animal models of aggression. Neuropsychopharmacology 118:1699–1708

    Google Scholar 

  • Olivier B, Mos J, van der Heyden J, Hartog J (1989) Serotonergic modulation of social interactions in isolated male mice. Psychopharmacology 97(2):154–156

    Article  PubMed  Google Scholar 

  • Pagani JH, Zhao M, Cui Z, Avram SKW, Caruana DA, Dudek SM, Young WS (2015) Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol Psychiatry 20(4):490–499

    Article  PubMed  Google Scholar 

  • Pappa I, St Pourcain B, Benke K, Cavadino A, Hakulinen C, Nivard MG, Nolte IM, Tiesler CMT, Bakermans-Kranenburg MJ, Davies GE, Evans DM, Geoffroy MC, Grallert H, Groen-Blokhuis MM, Hudziak JJ, Kemp JP, Keltikangas-Jarvinen L, McMahon G, Mileva-Seitz VR et al (2016) A genome-wide approach to children’s aggressive behavior: the EAGLE consortium. Am J Med Genet Part B 171(5):562–572

    Article  PubMed  Google Scholar 

  • Parker KJ, Oztan O, Libove RA, Mohsin N, Karhson DS, Sumiyoshi RD, Summers JE, Hinman KE, Motonaga KS, Phillips JM, Carson DS, Fung LK, Garner JP, Hardan AY (2019) A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism. Sci Transl Med 11(491)

    Google Scholar 

  • Potegal M, Blau A, Glusman M (1981) Inhibition of intraspecific aggression in male hamsters by septal stimulation. Physiol Psychol 9(2):213–218

    Article  Google Scholar 

  • Quintana DS, Guastella AJ (2020) An allostatic theory of oxytocin. Trends Cogn Sci 24(7):515–528

    Article  PubMed  Google Scholar 

  • Ramamurthi B (1988) Stereotactic operation in behaviour disorders. Amygdalotomy and hypothalamotomy. Acta Neurochir Suppl (Wien) 44:152–157

    PubMed  Google Scholar 

  • Ramos L, Hicks C, Kevin R, Caminer A, Narlawar R, Kassiou M, McGregor IS (2013) Acute prosocial effects of oxytocin and vasopressin when given alone or in combination with 3,4-Methylenedioxymethamphetamine in rats: involvement of the V1A receptor. Neuropsychopharmacology 38(11):2249–2259

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao V, Rosenberg P, Bertrand M, Salehinia S, Spiro J, Vaishnavi S, Rastogi P, Noll K, Schretlen DJ, Brandt J, Cornwell E, Makley M, Miles QS (2009) Aggression after traumatic brain injury: prevalence and correlates. J Neuropsychiatry Clin Neurosci 21(4):420–429. https://doi.org/10.1176/jnp.2009.21.4.420

    Article  PubMed  PubMed Central  Google Scholar 

  • Roeling TAP, Veening JG, Kruk MR, Peters JPW, Vermelis MEJ, Nieuwenhuys R (1994) Efferent connections of the hypothalamic “aggression area” in the rat. Neuroscience 59(4):1001–1024

    Article  PubMed  Google Scholar 

  • Rosa M, Franzini A, Giannicola G, Messina G, Altamura AC, Priori A (2012) Hypothalamic oscillations in human pathological aggressiveness. Biol Psychiatry 72(12):e33–e35

    Article  PubMed  Google Scholar 

  • Ross AP, McCann KE, Larkin TE, Song ZM, Grieb ZA, Huhman KL, Albers HE (2019) Sex-dependent effects of social isolation on the regulation of arginine-vasopressin (AVP) V1a, oxytocin (OT) and serotonin (5HT) 1a receptor binding and aggression. Horm Behav 116:Article 104578

    Article  PubMed  Google Scholar 

  • Sala M, Braida D, Lentini D, Busnelli M, Bulgheroni E, Capurro V, Finardi A, Donzelli A, Pattini L, Rubino T, Parolaro D, Nishimori K, Parenti M, Chini B (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69(9):875–882

    Article  PubMed  Google Scholar 

  • Sanchez C, Arnt J, Hyttel J, Moltzen EK (1993) The role of serotoninergic mechanisms in inhibition of isolation-induced aggression in male mice. Psychopharmacology (Berlin) 110(1–2):53–59. https://doi.org/10.1007/BF02246950

    Article  Google Scholar 

  • Sano K, Mayanagi Y (1988) Posteromedial hypothalamotomy in the treatment of violent, aggressive behaviour. Acta Neurochir Suppl (Wien) 44:145–151

    PubMed  Google Scholar 

  • Saylor KE, Amann BH (2016) Impulsive aggression as a comorbidity of attention-deficit/hyperactivity disorder in children and adolescents. J Child Adolesc Psychopharmacol 26(1):19–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva AC, Pandolfi M (2019) Vasotocinergic control of agonistic behavior told by Neotropical fishes. Gen Comp Endocrinol 273:67–72

    Article  PubMed  Google Scholar 

  • Stribley JM, Carter CS (1999) Developmental exposure to vasopressin increases aggression in adult prairie voles. Proc Natl Acad Sci U S A 96(22):12601–12604

    Article  PubMed  PubMed Central  Google Scholar 

  • Svare BB (1981) Maternal aggression in mammals. In: Gubernick DJ, Klopfer PH (eds) Parental Care in Mammals. Springer, US, pp 179–210

    Chapter  Google Scholar 

  • Takahashi A, Miczek KA (2013) Neurogenetics of aggressive behavior: studies in rodents. Neurosci Aggress:3–44

    Google Scholar 

  • Takahashi A, Quadros IM, de Almeida RMM, Miczek KA (2012) Behavioral and pharmacogenetics of aggressive behavior. In: Current topics in behavioral neurosciences (Vol. 12, pp. 73–138). Springer Verlag

    Google Scholar 

  • Tan O, Musullulu H, Raymond JS, Wilson B, Langguth M, Bowen MT (2019) Oxytocin and vasopressin inhibit hyper-aggressive behaviour in socially isolated mice. Neuropharmacology 156:Article Unsp 107573

    Article  Google Scholar 

  • Tan O, Martin LJ, Bowen MT (2020) Divergent pathways mediate 5-HT1A receptor agonist effects on close social interaction, grooming and aggressive behaviour in mice: exploring the involvement of the oxytocin and vasopressin systems. J Psychopharmacol 34:795–805

    Article  PubMed  Google Scholar 

  • Taylor JH, Walton JC, McCann KE, Norvelle A, Liu Q, Vander Velden JW, Borland JM, Hart M, Jin C, Huhman KL, Cox DN, Albers HE (2022) CRISPR-Cas9 editing of the arginine-vasopressin V1a receptor produces paradoxical changes in social behavior in Syrian hamsters. Proc Natl Acad Sci U S A 119(19):e2121037119

    Article  PubMed  PubMed Central  Google Scholar 

  • Terranova JI, Ferris CF, Albers HE (2017) Sex differences in the regulation of offensive aggression and dominance by Arginine-vasopressin. Front Endocrinol 8(Nov):308

    Article  Google Scholar 

  • Trainor BC, Finy MS, Nelson RJ (2008) Paternal aggression in a biparental mouse: parallels with maternal aggression. Horm Behav 53(1):200–207

    Article  PubMed  Google Scholar 

  • Uzefovsky F, Shalev I, Israel S, Knafo A, Ebstein RP (2012) Vasopressin selectively impairs emotion recognition in men. Psychoneuroendocrinology 37(4):576–580

    Article  PubMed  Google Scholar 

  • van Donkelaar MMJ, Hoogman M, Pappa I, Tiemeier H, Buitelaar JK, Franke B, Bralten J (2018) Pleiotropic contribution of MECOM and AVPR1A to aggression and subcortical brain volumes. Front Behav Neurosci 12:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Veenema AH, Neumann ID (2007) Neurobiological mechanisms of aggression and stress coping: A comparative study in mouse and rat selection lines. Brain Behav Evol 70:274–285

    Article  PubMed  Google Scholar 

  • Veenema AH, Beiderbeck DI, Lukas M, Neumann ID (2010) Distinct correlations of vasopressin release within the lateral septum and the bed nucleus of the stria terminalis with the display of intermale aggression. Horm Behav 58(2):273–281

    Article  PubMed  Google Scholar 

  • Vogel F, Wagner S, Baskaya O, Leuenberger B, Mobascher A, Dahmen N, Lieb K, Tadic A (2012) Variable number of tandem repeat polymorphisms of the arginine vasopressin receptor 1A gene and impulsive aggression in patients with borderline personality disorder. Psychiatr Genet 22(2):105–106

    Article  PubMed  Google Scholar 

  • Vollebregt O, Koyama E, Zai CC, Shaikh SA, Lisoway AJ, Kennedy JL, Beitchman JH (2021) Evidence for association of vasopressin receptor 1A promoter region repeat with childhood onset aggression. J Psychiatr Res 140:522–528

    Article  PubMed  Google Scholar 

  • Weissenberger AA, Dell ML, Liow K, Theodore W, Frattali CM, Hernandez D, Zametkin AJ (2001) Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 40(6):696–703

    Article  PubMed  Google Scholar 

  • Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS 3rd. (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7(9):975–984

    Article  PubMed  Google Scholar 

  • Wersinger SR, Caldwell HK, Christiansen M, Young WS 3rd. (2007a) Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav 6(7):653–660

    Article  PubMed  Google Scholar 

  • Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu SB, Young Iii WS (2007b) Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression [Article]. Genes Brain Behav 6(6):540–551

    Article  PubMed  Google Scholar 

  • White SM, Kucharik RF, Moyer JA (1991) Effects of serotonergic agents on isolation-induced aggression. Pharmacol Biochem Behav 39(3):729–736

    Article  PubMed  Google Scholar 

  • Wong LC, Wang L, D’Amour JA, Yumita T, Chen G, Yamaguchi T, Chang BC, Bernstein H, You X, Feng JE, Froemke RC, Lin D (2016) Effective modulation of male aggression through lateral septum to medial hypothalamus projection. Curr Biol 26(5):593–604

    Article  PubMed  PubMed Central  Google Scholar 

  • Wongwitdecha N, Marsden CA (1996) Social isolation increases aggressive behaviour and alters the effects of diazepam in the rat social interaction test. Behav Brain Res 75(1–2):27–32

    Article  PubMed  Google Scholar 

  • Zeman W, King FA (1958) Tumors of the septum pellucidum and adjacent structures with abnormal affective behavior: an anterior midline structure syndrome. J Nerv Ment Dis 127(6):490–502

    Article  PubMed  Google Scholar 

  • Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, Tan L, Xu W, Li JQ, Wang J, Lai TJ, Yu JT (2016) The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: systematic review and meta-analysis. J Affect Disord 190:264–271

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Bowen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tan, O., Bowen, M.T. (2023). The Vasopressin V1A Receptor and Aggression. In: Martin, C., Preedy, V.R., Patel, V.B. (eds) Handbook of Anger, Aggression, and Violence. Springer, Cham. https://doi.org/10.1007/978-3-030-98711-4_90-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98711-4_90-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98711-4

  • Online ISBN: 978-3-030-98711-4

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics