Skip to main content

Stem Cell Technology in Medical Biotechnology

  • Chapter
  • First Online:
Fundamentals and Advances in Medical Biotechnology

Abstract

Stem cells are small, unspecialized, and undifferentiated cells with a chromatin conformation that is not characteristic of any particular cell type and can be programmed, upon appropriate stimulation, into different cell types. These cells provide base material for formation of many different body cells for therapeutic and research applications. There has been a revolution in the therapeutic applications of stem cell technology during the past decade and the revolutionary introduction of CRISPR-Cas9 has further increased the possibilities of their use. This chapter describes stem cell technology, its types, applications in various established pathological conditions, and ethical concerns revolving their use. It also provides insightful details about the culture conditions required for propagating and differentiating stem cells, tissue engineering, establishment of organ cultures, and limitations in establishing stem cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10(1):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silva J, Smith A (2008) Capturing pluripotency. Cell 132(4):532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morita R et al (2015) ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc Natl Acad Sci 112:160–165

    Article  CAS  PubMed  Google Scholar 

  4. Patel M, Yang S (2010) Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev Rep 6:367–380

    Article  CAS  PubMed  Google Scholar 

  5. Meng F et al (2012) Induction of fibroblasts to neurons through adenoviral gene delivery. Cell Res 22:436–440

    Article  CAS  PubMed  Google Scholar 

  6. Ban H et al (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci 108:14234–14239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chakraborty S et al (2014) A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3:940–947

    Article  CAS  Google Scholar 

  8. Chen Z, Li S, Subramaniam S, Shyy JY-J, Chien S (2017) Epigenetic regulation: a new frontier for biomedical engineers. Annu Rev Biomed Eng 19:195–219

    Article  CAS  PubMed  Google Scholar 

  9. Rubio A et al (2016) Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming. Sci Rep 6:1–16

    Article  CAS  Google Scholar 

  10. Chavez A et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12:326–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sayed N et al (2015) Transdifferentiation of human fibroblasts to endothelial cells role of innate immunity. Circulation 131:300–309

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  13. Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17:413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Margariti A et al (2012) Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci 109:13793–13798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schachterle W et al (2017) Sox17 drives functional engraftment of endothelium converted from non-vascular cells. Nat Commun 8:1–12

    Article  CAS  Google Scholar 

  16. Wang C et al (2017) Loss of MyoD promotes fate transdifferentiation of myoblasts into Brown adipocytes. EBioMedicine 16:212–223

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y et al (2015) CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 5:1–14

    Google Scholar 

  19. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaur K, Yang J, Eisenberg CA, Eisenberg LM (2014) 5-Azacytidine promotes the Transdifferentiation of cardiac cells to skeletal myocytes. Cell Reprogram 16:324–330

    Article  CAS  PubMed  Google Scholar 

  21. Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123:8–13

    Article  CAS  PubMed  Google Scholar 

  22. Lu N et al (2006) The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 58:782–797

    Article  CAS  PubMed  Google Scholar 

  23. Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chambers I, Tomlinson SR (2009) The transcriptional foundation of pluripotency. Development 136(14):2311–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ (2009) Mongan NP Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18(7):1093–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosner MH, Vigano MA, Ozato K et al (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345:686–692

    Article  CAS  PubMed  Google Scholar 

  28. Scholer HR, Dressler GR, Balling R, Rohdewohld H, Gruss P (1990) Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J 9:2185–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nichols J, Zevnik B, Anastassiadis K et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    Article  CAS  PubMed  Google Scholar 

  30. Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  CAS  PubMed  Google Scholar 

  31. Tokuzawa Y, Kaiho E, Maruyama M et al (2003) Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23:2699–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuroda T, Tada M, Kubota H et al (2005) Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 25:2475–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodda DJ, Chew JL, Lim LH et al (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737

    Article  CAS  PubMed  Google Scholar 

  34. Okumura-Nakanishi S, Saito M, Niwa H, Ishikawa F (2005) Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem 280:5307–5317

    Article  CAS  PubMed  Google Scholar 

  35. Tomioka M, Nishimoto M, Miyagi S et al (2002) Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 30:3202–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Masui S, Nakatake Y, Toyooka Y et al (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9:625–635

    Article  CAS  PubMed  Google Scholar 

  37. Mitsui K, Tokuzawa Y, Itoh H et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  CAS  PubMed  Google Scholar 

  38. Chambers I, Silva J, Colby D et al (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450:1230–1234

    Article  CAS  PubMed  Google Scholar 

  39. Silva J, Nichols J, Theunissen TW et al (2009) Nanog is the gateway to the pluripotent ground state. Cell 138:722–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen X, Xu H, Yuan P et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    Article  CAS  PubMed  Google Scholar 

  41. Kidder BL, Yang J, Palmer S (2008) Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS One 3:e3932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061

    Article  CAS  PubMed  Google Scholar 

  43. Rahl PB, Lin CY, Seila AC et al (2010) c-Myc regulates transcriptional pause release. Cell 141:432–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kagey MH, Newman JJ, Bilodeau S et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loh YH, Wu Q, Chew JL et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440

    Article  CAS  PubMed  Google Scholar 

  46. Boyer LA, Lee TI, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6):678–684

    Article  CAS  PubMed  Google Scholar 

  48. Zinman L, Cudkowicz M (2011) Emerging targets and treatments in amyotrophic lateral sclerosis. Lancet Neurol 10(5):481–490

    Article  CAS  PubMed  Google Scholar 

  49. Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14(4):248–264

    Article  CAS  PubMed  Google Scholar 

  50. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS et al (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347(6229):1436–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boillée S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52(1):39–59

    Article  PubMed  CAS  Google Scholar 

  52. Cheah BC, Vucic S, Krishnan AV, Kiernan MC (2010) Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 17(18):1942–1199

    Article  CAS  PubMed  Google Scholar 

  53. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gordon P, Corcia P, Meininger V (2013) New therapy options for amyotrophic lateral sclerosis. Expert Opin Pharmacother 14(14):1907–1917

    Article  CAS  PubMed  Google Scholar 

  55. Srivastava AK, Bulte JW (2014) Seeing stem cells at work in vivo. Stem Cell Rev Rep 10(1):127–144

    Article  PubMed  Google Scholar 

  56. Mao Z, Zhang S, Chen H (2015) Stem cell therapy for amyotrophic lateral sclerosis. Cell Regen 4:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  58. Bennett JH, Joyner CJ, Triffitt JT, Owen ME (1991) Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 99(Pt 1):131–139

    Article  PubMed  Google Scholar 

  59. Galotto M, Campanile G, Robino G, Cancedda FD, Bianco P, Cancedda R (1994) Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. J Bone Miner Res 9(8):1239–1249

    Article  CAS  PubMed  Google Scholar 

  60. Rose T, Peng H, Shen HC, Usas A, Kuroda R, Lill H, Fu FH, Huard J (2003) The role of cell type in bone healing mediated by ex vivo gene therapy. Langenbeck’s Arch Surg 388(5):347–355

    Article  Google Scholar 

  61. Liu X, Liao X, Luo E, Chen W, Bao C, Xu HH (2014) Mesenchymal stem cells systemically injected into femoral marrow of dogs home to mandibular defects to enhance new bone formation. Tissue Eng Part A 20(3–4):883–892

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fernandes MB, Guimarães JA, Casado PL, Cavalcanti Ados S, Gonçalves NN et al (2014) The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model. BMC Vet Res 10:36

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29(29):3973–3982

    Article  CAS  PubMed  Google Scholar 

  64. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Asatrian G, Pham D, Hardy WR, James AW, Peault B (2015) Stem cell technology for bone regeneration: current status and potential applications. Stem Cells Clon 8:39–48

    Google Scholar 

  66. Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G et al (1998) Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91(3):756–763. PMID: 9446633

    Article  CAS  PubMed  Google Scholar 

  67. Re A, Michieli M, Casari S, Allione B, Cattaneo C, Rupolo M et al (2009) High-dose therapy and autologous peripheral blood stem cell transplantation as salvage treatment for AIDS-related lymphoma: long-term results of the Italian Cooperative Group on AIDS and Tumors (GICAT) study with analysis of prognostic factors. Blood 114(7):1306–1313

    Article  CAS  PubMed  Google Scholar 

  68. Baker KS, DeFor TE, Burns LJ, Ramsay NK, Neglia JP, Robison LL (2003) New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol 21(7):1352–1358. https://doi.org/10.1200/JCO.2003.05.108. Erratum in: J Clin Oncol. 2003;21(16):3181

    Article  PubMed  Google Scholar 

  69. Pavone V, Gaudio F, Console G, Vitolo U, Iacopino P, Guarini A, Liso V, Perrone T, Liso A (2006) Poor mobilization is an independent prognostic factor in patients with malignant lymphomas treated by peripheral blood stem cell transplantation. Bone Marrow Transplant 37(8):719–724

    Article  CAS  PubMed  Google Scholar 

  70. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603. https://doi.org/10.1161/CIR.0000000000000485. Erratum in: Circulation. 2017;135(10):e646. Erratum in: Circulation. 2017;136(10):e196. PMID: 28122885; PMCID: PMC5408160

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tajbakhsh S (2003) Stem cells to tissue: molecular, cellular and anatomical heterogeneity in skeletal muscle. Curr Opin Genet Dev 13(4):413–422

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki K, Murtuza B, Suzuki N, Smolenski RT, Yacoub MH (2001) Intracoronary infusion of skeletal myoblasts improves cardiac function in doxorubicin-induced heart failure. Circulation 104(12 Suppl 1):I213–I217

    Article  CAS  PubMed  Google Scholar 

  73. Sampogna G, Guraya SY, Forgione A (2015) Regenerative medicine: historical roots and potential strategies in modern medicine. J Microsc Ultrastruct 3(3):101–107

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hagège AA, Marolleau JP, Vilquin JT, Alhéritière A, Peyrard S, Duboc D et al (2006) Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation 114(1 Suppl):I108–I113

    PubMed  Google Scholar 

  75. Ince H, Petzsch M, Rehders TC, Chatterjee T, Nienaber CA (2004) Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 11(6):695–704

    Article  PubMed  Google Scholar 

  76. Veltman CE, Soliman OI, Geleijnse ML, Vletter WB, Smits PC, ten Cate FJ et al (2008) Four-year follow-up of treatment with intramyocardial skeletal myoblasts injection in patients with ischaemic cardiomyopathy. Eur Heart J 29(11):1386–1396

    Article  PubMed  Google Scholar 

  77. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530. https://doi.org/10.1126/science.279.5356.1528. Erratum in: Science 1998;281(5379):923. PMID: 9488650

    Article  CAS  PubMed  Google Scholar 

  78. Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV, Kögler G, Wernet P (2001) Intrakoronare, humane autologe Stammzelltransplantation zur Myokardregeneration nach Herzinfarkt [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. Dtsch Med Wochenschr 126(34–35):932–938. German

    Google Scholar 

  79. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY et al (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110(4):1446–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Samak M, Hinkel R (2019) Stem cells in cardiovascular medicine: historical overview and future prospects. Cells 8(12):1530

    Article  CAS  PubMed Central  Google Scholar 

  82. Liu G, David BT, Trawczynski M, Fessler RG (2020) Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep 16(1):3–32

    Article  PubMed  Google Scholar 

  83. Kwon SG, Kwon YW, Lee TW, Park GT, Kim JH (2018) Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res 22:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pizzicannella J, Diomede F, Merciaro I et al (2018) Endothelial committed oral stem cells as modelling in the relationship between periodontal and cardiovascular disease. J Cell Physiol 233:6734–6747

    Article  CAS  PubMed  Google Scholar 

  85. Fantuzzo JA, Hart RP, Zahn JD, Pang ZP (2019) Compartmentalized Devices as Tools for Investigation of Human Brain Network Dynamics. Dev Dyn 248:65–77

    Article  PubMed  Google Scholar 

  86. Nikolic MZ, Sun D, Rawlins EL (2018) Human lung development: recent progress and new challenges. Development 145:dev163485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. WHO (n.d.) Global prevalence of infertility, infecundity and childlessness. WHO. World Health Organization, Geneva. Accessed 14 Jul 2021

    Google Scholar 

  88. Wang J, Sauer MV (2006) In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag 2(4):355–364. https://doi.org/10.2147/tcrm.2006.2.4.355

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhao X, Li W, Lv Z, Liu L, Tong M, Hai T et al (2010) Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev Rep 6(3):390–397

    Article  PubMed  Google Scholar 

  90. Takehara Y, Yabuuchi A, Ezoe K, Kuroda T, Yamadera R, Sano C, Murata N, Aida T, Nakama K, Aono F, Aoyama N, Kato K, Kato O (2013) The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab Investig 93(2):181–193

    Article  CAS  PubMed  Google Scholar 

  91. Woods DC, Tilly JL (2015) Autologous Germline Mitochondrial Energy Transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med 33(6):410–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao YX, Chen SR, Su PP, Huang FH, Shi YC, Shi QY, Lin S (2019) Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases. Stem Cells Int 2019:9071720

    PubMed  PubMed Central  Google Scholar 

  93. Yin N, Wang Y, Lu X, Liu R, Zhang L, Zhao W, Yuan W, Luo Q, Wu H, Luan X et al (2018) hPMSC transplantation restoring ovarian function in premature ovarian failure mice is associated with change of Th17/Tc17 and Th17/Treg cell ratios through the PI3K/Akt signal pathway. Stem Cell Res Ther 9:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li H, Zhao W, Wang L, Luo Q, Yin N, Lu X, Hou Y, Cui J, Zhang H (2019) Human placenta-derived mesenchymal stem cells inhibit apoptosis of granulosa cells induced by IRE1α pathway in autoimmune POF mice. Cell Biol Int 43:899–909

    Article  CAS  PubMed  Google Scholar 

  95. Kim TH, Choi JH, Jun Y, Lim SM, Park SL, Paek JYL, Lee SH, Hwang JY, Kim GJ (2018) 3D-cultured human placenta-derived mesenchymal stem cell spheroids enhance ovary function by inducing folliculogenesis. Sci Rep 8:15313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Dakhore S, Nayer B, Hasegawa K (2018) Human pluripotent stem cell culture: current status, challenges, and advancement. Stem Cells Int 2018:7396905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Badawy A, Sobh MA, Ahdy M, Abdelhafez MS (2017) Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Women’s Health 9:441–447

    Article  CAS  Google Scholar 

  98. Sun B, Ma Y, Wang F, Hu L, Sun Y (2019) miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. Stem Cell Res Ther 10:360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L (2013) MSC Committee of the International Society for Cellular Therapy (ISCT). Immunological characterization of multipotent mesenchymal stromal cells–The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15:1054–1061

    Article  PubMed  Google Scholar 

  100. Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, Dominici M, Fibbe WE, Gee AP, Gimble JM et al (2016) International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 18:151–159

    Article  CAS  PubMed  Google Scholar 

  101. Kilic S, Yuksel B, Pinarli F, Albayrak A, Boztok B, Delibasi T (2014) Effect of stem cell application on Asherman syndrome, an experimental rat model. J Assist Reprod Genet 31:975–982

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS (2011) Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med 15:747–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Teklenburg G, Salker M, Heijnen C, Macklon NS, Brosens JJ (2010) The molecular basis of recurrent pregnancy loss: impaired natural embryo selection. Mol Hum Reprod 16:886–895

    Article  CAS  PubMed  Google Scholar 

  104. Eftekhar M, Tabibnejad N, Tabatabaie AA (2018) The thin endometrium in assisted reproductive technology: an ongoing challenge. Mid East Fertil Soc J 23:1–7

    Article  Google Scholar 

  105. Al-Ghamdi A, Coskun S, Al-Hassan S, Al-Rejjal R, Awartani K (2008) The correlation between endometrial thickness and outcome of in vitro fertilization and embryo transfer (IVF-ET) outcome. Reprod Biol Endocrinol 6:37–37. https://doi.org/10.1186/1477-7827-6-37

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yang M, Lin L, Sha C, Li T, Zhao D, Wei H, Chen Q, Liu Y, Chen X, Xu W (2020) Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. Lab Investig 100:342–352

    Article  CAS  PubMed  Google Scholar 

  107. Shao X, Ai G, Wang L, Qin J, Li Y, Jiang H et al (2019) Adipose-derived stem cells transplantation improves endometrial injury repair. Zygote Camb Engl 27(6):367–374

    Article  CAS  Google Scholar 

  108. Azizi R, Aghebati-Maleki L, Nouri M, Marofi F, Negargar S, Yousefi M (2018) Stem cell therapy in Asherman syndrome and thin endometrium: stem cell- based therapy. Biomed Pharmacother 102:333–343

    Article  CAS  PubMed  Google Scholar 

  109. Volarevic V, Ljujic B, Stojkovic P et al (2011) Human stem cell research and regenerative medicine: present and future. Br Med Bull 99:155–168

    Article  PubMed  Google Scholar 

  110. Volarevic V, Erceg S, Bhattacharya SS et al (2013) Stem cell-based therapy for spinal cord injury. Cell Transplant 22:1309–1323

    Article  PubMed  Google Scholar 

  111. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    Article  CAS  PubMed  Google Scholar 

  112. Zhang X, Stojkovic P, Przyborski S et al (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676

    Article  CAS  PubMed  Google Scholar 

  113. International Society for Stem Cell Research. Stem cell policies by country. http://www.isscr.org/public/regions/index.cfm. Accessed 11 Apr 2008

  114. Nussbaum J, Minami E, Laflamme MA et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    Article  CAS  PubMed  Google Scholar 

  115. Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  CAS  PubMed  Google Scholar 

  116. Prokhorova TA, Harkness LM, Frandsen U et al (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 18:47–54

    Article  CAS  PubMed  Google Scholar 

  117. Assistance Publique - Hôpitaux de Paris (n.d.) Transplantation of human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure [ESCORT]

    Google Scholar 

  118. Bushman FD (2007) Retroviral integration and human gene therapy. J Clin Investig 117:2083–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419. https://doi.org/10.1126/science.1088547

    Article  CAS  PubMed  Google Scholar 

  120. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736. https://doi.org/10.1038/nri2395

    Article  CAS  PubMed  Google Scholar 

  121. Nasef A, Ashammakhi N, Fouillard L (2008) Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regen Med 3:531–546. https://doi.org/10.2217/17460751.3.4.531

    Article  CAS  PubMed  Google Scholar 

  122. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749. https://doi.org/10.1634/stemcells.2007-0197

    Article  CAS  PubMed  Google Scholar 

  123. Pessina A, Gribaldo L (2006) The key role of adult stem cells: therapeutic perspectives. Curr Med Res Opin 22:2287–2300. https://doi.org/10.1185/030079906X148517

    Article  CAS  PubMed  Google Scholar 

  124. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JWU, Tiemann K, Bohlen H, Hescheler J (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369. https://doi.org/10.1182/blood-2006-12-063412

    Article  CAS  PubMed  Google Scholar 

  125. Garcia S, Martin MC, De La Fuente R, Cigudosa JC, Garcia-Castro J, Bernad A (2010) Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res 316:1648–1650. https://doi.org/10.1016/j.yexcr.2010.02.016

    Article  CAS  PubMed  Google Scholar 

  126. Torsvik A, Rosland GV, Svendsen A, Molven A, Immervoll H, McCormack E, Lonning PE, Primon M, Sobala E, Tonn JC (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track - letter. Cancer Res 70:6393–6396. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  127. Vogel G (2010) To scientists’ dismay, mixed-up cell lines strike again. Science 329:1004. https://doi.org/10.1126/science.329.5995.1004

    Article  CAS  PubMed  Google Scholar 

  128. Kuriyan AE, Albini TA, Townsend JH et al (2017) Vision loss after intravitreal injection of autologous “stem cells” for AMD. N Engl J Med 376:1047–1053

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lazennec JC (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26:1387–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Konomi K, Tobita M, Kimura K et al (2015) New Japanese initiatives on stem cell therapies. Cell Stem Cell 16:350–352

    Article  CAS  PubMed  Google Scholar 

  131. Cyranoski D (2019) The potent effects of Japan’s stem-cell policies. Nature 573:482–485

    Article  CAS  PubMed  Google Scholar 

  132. ViaCyte (2015) A safety, tolerability, and efficacy study of VC-01™ combination product in subjects with type I diabetes mellitus. U.S. National Institute of Health, Bethesda, MD

    Google Scholar 

  133. Volarevic V, Markovic BS, Gazdic M et al (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15(1):36–45. https://doi.org/10.7150/ijms.21666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  135. Al-Lamki RS, Bradley JR, Pober JS (2017) Human organ culture: updating the approach to bridge the gap from in vitro to in vivo in inflammation, cancer, and stem cell biology. Front Med (Lausanne) 4:148

    Article  Google Scholar 

  136. Corrò C, Novellasdemunt L, Li VSW (2020) A brief history of organoids. Am J Phys Cell Physiol 319(1):C151–C165

    Article  CAS  Google Scholar 

  137. Howard D, Buttery LD, Shakesheff KM, Roberts SJ (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213(1):66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  CAS  PubMed  Google Scholar 

  139. Richardson JB, Caterson B, Evans EH, Ashton BA, Roberts S (1999) Repair of human articular cartilage after implantation of autologous chondrocytes. J Bone Joint Surg (Br) 81:1064–1068

    Article  CAS  Google Scholar 

  140. Hernon CA, Dawson RA, Freedlander E et al (2006) Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient. Regen Med 1:809–821

    Article  PubMed  Google Scholar 

  141. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  PubMed  Google Scholar 

  142. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030. https://doi.org/10.1016/S0140-6736(08)61598-6. Erratum in: Lancet. 2009;373(9662):462. Erratum in: Lancet. 2019;394(10194):218. PMID: 19022496

    Article  PubMed  Google Scholar 

  143. Hakim N (2009) Artificial organs. In: New techniques in surgery series 4. Springer, New York, NY

    Google Scholar 

  144. Nichols JE, Cortiella J (2008) Engineering of a complex organ: progress toward development of a tissue-engineered lung. Proc Am Thorac Soc 5(6):723–730

    Article  PubMed  Google Scholar 

  145. Pongracz J, Keen M (2009) Medical biotechnology. Elsevier Health Sciences, Philadelphia, PA

    Google Scholar 

  146. Lee JW, Kang KS, Lee SH, Kim J-Y, Lee B-K, Cho D-W (2011) Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752

    Article  CAS  PubMed  Google Scholar 

  147. Petrochenko PE, Torgersen J, Gruber P, Hicks LA, Zheng J, Kumar G et al (2015) Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells. Adv Healthc Mater 4:739–747

    Article  CAS  PubMed  Google Scholar 

  148. Buyuksungur S, Endogan TT, Buyuksungur A, Bektas EI, Torun KG, Yucel D et al (2017) 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater Sci 5:2144–2158

    Article  CAS  PubMed  Google Scholar 

  149. Liao H-T, Chang K-H, Jiang Y, Chen J-P, Lee M-Y (2011) Fabrication of tissue engineered PCL scaffold by selective laser-sintered machine for osteogeneisis of adipose-derived stem cells. Virt Phys Prototyp 6:57–60

    Article  Google Scholar 

  150. Duarte CDF, Blaeser A, Buellesbach K, Sen KS, Xun W, Tillmann W et al (2016) Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv Healthc Mater 5:1336–1345

    Article  CAS  Google Scholar 

  151. Cunniffe GM, Gonzalez-Fernandez T, Daly A, Sathy BN, Jeon O, Alsberg E et al (2017) Three-dimensional bioprinting of polycaprolactone reinforced gene activated bioinks for bone tissue engineering. Tissue Eng Part A 23:891–900

    Article  CAS  PubMed  Google Scholar 

  152. Wenz A, Borchers K, Tovar GEM, Kluger PJ (2017) Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication 9:044103

    Article  PubMed  CAS  Google Scholar 

  153. Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B et al (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep 7:1778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Yoon No D, Lee KH, Lee J, Lee SH (2015) 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15(19):3822–3837

    Article  CAS  PubMed  Google Scholar 

  155. Jia Z, Cheng Y, Jiang X, Zhang C, Wang G, Xu J, Li Y, Peng Q, Gao Y (2020) 3D Culture system for liver tissue mimicking hepatic plates for improvement of human hepatocyte (C3A) function and polarity. Biomed Res Int 2020:6354183

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, S., Dar, T., Koli, S., Wani, W.Y., Anwar, M., Farooq, Z. (2022). Stem Cell Technology in Medical Biotechnology. In: Anwar, M., Ahmad Rather, R., Farooq, Z. (eds) Fundamentals and Advances in Medical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-98554-7_8

Download citation

Publish with us

Policies and ethics