Skip to main content

Quinones and Organic Dyes Based Redox-Active Organic Molecular Compounds Immobilized Surfaces for Electrocatalysis and Bioelectrocatalysis Applications

  • Chapter
  • First Online:
Organic Electrodes

Abstract

Owing to the facile electron-transfer behavior, molecular redox-compound-based electrochemical oxidation and reduction reactions have been referred to as superior systems for a variety of electrocatalytic and electroanalytical applications. In general, redox-active organic molecules based on quinones and organic dyes like methylene blue, meldola’s blue, neutral red, methylene green, and thionine-based species have been referred widely for electrocatalytic and bioelectrocatalytic oxidation/reduction reactions. Indeed, the preparation of stable and highly redox-active mediator surface-confined electrochemical systems is a challenging task. In the literature, covalently immobilized organic moiety-modified electrodes have been often encountered for serious surface fouling problems. On the other hand, carbon nanomaterial coupled organic redox mediator prepared by multiple π-π immobilization interactions between the aromatic conjugated e and sp2 carbon of graphitic site have shown superior stability and in turn enhanced electron-transfer functional activity. The selectivity and efficiency towards the target analyte are dependent on the choice of materials and methods for modifying electrodes. In this book chapter, we review the preparation and characterization of various quinone and organic dyes based redox-mediator immobilized carbon nanomaterial modified electrodes for electrocatalytic and bioelectroctalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, R.W., Higuchi, T. (eds.): Techniques of chemistry: molecular design of electrode surfaces, Vol. XXII. Wiley, Michigan (1992). ISSN 0082-2531

    Google Scholar 

  2. Zen, J.-M., Kumar, A.S., Tsai, D.-M.: Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15, 1073–1087 (2003)

    Article  CAS  Google Scholar 

  3. Dalkiran, B., Brett, C.M.A.: Polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical sensors and biosensors: a review. Microchim Acta 188, 178 (2021)

    Article  CAS  Google Scholar 

  4. Gayathri, C.H., Mayuri, P., Sankaran, K., Kumar, A.S.: An electrochemical immunosensor for efficient detection of uropathogenic E. coli based on thionine dye immobilized chitosan/functionalized-MWCNT modified electrode. Biosens. Bioelectron. 82, 71–77 (2016)

    Article  CAS  Google Scholar 

  5. Krzyczmonik, P., Socha, E., Skrzypek, S.: Electrochemical detection of glucose in beverage samples using poly(3,4-ethylenedioxythiophene)-modified electrodes with immobilized glucose oxidase. Electrocatalysis 9, 380–387 (2018)

    Article  CAS  Google Scholar 

  6. Kumar, A.S., Tanase, T., Iida, M.: In situ nanostructure formation of (µ-hydroxo)bis(µ-carboxylato) diruthenium units in nafion membrane and its utilization for selective reduction of nitrosonium ion in aqueous medium. Langmuir 23, 391–394 (2007)

    Article  CAS  Google Scholar 

  7. Hoogvliet, J.C., Van, O.S.P.J.H.J., Mark, E.J.V., van Bennekom, W.P.: Modification of glassy carbon electrode surfaces with mediators and bridge molecules. Biosens. Bioelectron. 6, 413–423 (1991)

    Article  CAS  Google Scholar 

  8. Geng, L., Boguslavsky, L.I., Kovalev, I.P., Sahni, S.K., Kalash, H., Skotheim, T.A.: Amperometric biosensors based on dehydrogenase/NAD and heterocyclic quinones. Biosens. Bioelectron. 11, 1267–1275 (1996)

    Article  Google Scholar 

  9. Simón, B.P., Fàbregas, E.: Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosens. Bioelectron. 19, 1131–1138 (2004)

    Article  CAS  Google Scholar 

  10. Kullapere, M., Seinberg, J.M., Maeorg, U., Maia, G., Schiffrin, D.J., Tammeveski, K.: Electroreduction of oxygen on glassy carbon electrodes modified with in situ generated anthraquinone diazonium cations. Electrochim Acta 54, 1961–1969 (2009)

    Article  CAS  Google Scholar 

  11. Wendland, T.R., Muntean, B.S., Kaur, J., Mukherjee, J., Chen, J., Tan, X., Attygalle, D., Collins, R.W., Kirchhoff, J.R., Tillekeratne, L.M.V.: In situ self-assembly of thiolated ortho-quinone capped electrocatalysts for bioanalytical applications. Electroanalysis 23, 2275–2279 (2011)

    Article  CAS  Google Scholar 

  12. Hou, J., González, M.V., Fadeev, M., Liu, X., Lavi, R., Willner, I.: Catalyzed and electrocatalyzed oxidation of L-tyrosine and L-phenylalanine to dopachrome by nanozymes. Nano. Lett. 18, 4015–4022 (2018)

    Article  CAS  Google Scholar 

  13. Motta, N., Guadalupe, A.R.: Activated carbon paste electrodes for biosensors. Anal. Chem. 66, 566–571 (1994)

    Article  CAS  Google Scholar 

  14. Wang, P., Amarasinghe, S., Leddy, J., Arnold, M., Dordick, J.S.: Enzymatically prepared poly(hydroquinone) as a mediator for amperometric glucose sensors. Polymer 39, 123–127 (1998)

    Article  CAS  Google Scholar 

  15. Laurinavicius, V., Kurtinaitiene, B., Liauksminas, V., Jankauskaite, A., Simkus, R., Meskys, R., Boguslavsky, L., Skotheim, T., Tanenbaum, S.: Reagentless biosensor based on PQQ-depended glucose dehydrogenase and partially hydrolyzed polyarbutin. Talanta 52, 485–493 (2000)

    Article  CAS  Google Scholar 

  16. Nakano, K., Hirayama, G., Toguchi, M., Nakamura, K., Iwamoto, K., Soh, N., Imato, T.: Poly(hydroquinone)-coated electrode for immobilizing of 5’-amine functioned capture probe DNA and electrochemical response to DNA hybridization. Sci. Technol. Adv. Mater 7, 718–725 (2006)

    Article  CAS  Google Scholar 

  17. Nann, T., Urban, G.A.: Deposition of hydroquinone-thiosulfate on gold by means of anodic oxidation. J. Electroanal Chem. 505, 125–132 (2001)

    Article  CAS  Google Scholar 

  18. Parra, M.R., Lorenzo, E., Pariente, F.: Synthesis and electrocatalytic activity towards oxidation of hydrazine of a new family of hydroquinone salophen derivatives: application to the construction of hydrazine sensors. Sens. Actuators B 107, 678–687 (2005)

    Article  CAS  Google Scholar 

  19. Wang, Y., Chen, Q., Zeng, X.: Potentiometric biosensor for studying hydroquinone cytotoxicity in vitro. Biosens. Bioelectron 25, 1356–1362 (2010)

    Article  CAS  Google Scholar 

  20. Kubota, L.T., Gouvea, F., Andrade, A.N., Milagres, B.G., Neto, G.D.O.: Electrochemical sensor for NADH based on meldola’s blue immobilized on silica gel modified with titanium phosphate. Electrochim Acta 41, 1465–1496 (1996)

    Article  CAS  Google Scholar 

  21. Zhu, L., Zhai, J., Yang, R., Tian, C., Guo, L.: Electrocatalytic oxidation of NADH with meldola’s blue functionalized carbon nanotubes electrodes. Biosens. Bioelectron. 22, 2768–2773 (2007)

    Article  CAS  Google Scholar 

  22. Simon, B.P., Macanas, J., Munoz, M., Fabregas, E.: Evaluation of different mediator-modified screen-printed electrodes used in a flow system as amperometric sensors for NADH. Talanta 7, 2102–2107 (2007)

    Google Scholar 

  23. Radoi, A., Compagnone, D., Batič, M., Klinčar, J., Gorton, L., Palleschi, G.: NADH screen-printed electrodes modified with zirconium phosphate, meldola blue, and Reinecke salt. Application to the detection of glycerol by FIA. Anal. Bioanal. Chem. 387, 1049–1058 (2007)

    Google Scholar 

  24. Hoffmann, A.A., Dias, S.L.P., Benvenutti, E.V., Lima, E.C., Pavan, F.A., Rodrigues, J.R., Scotti, R., Ribeiro, E.S., Gushikem, Y.: Cationic dyes immobilized on cellulose acetate surface modified with titanium dioxide: Factorial design and an application as sensor for NADH. J. Braz Chem. Soc. 18, 1462–1472 (2007)

    Article  CAS  Google Scholar 

  25. Arvinte, A., Sesay, A.M., Virtanen, V., Bala, C.: Evaluation of meldola blue-carbon nanotube-sol-gel composite for electrochemical NADH sensors and their application for lactate dehydrogenase-based biosensors. Electroanalysis 20, 2355–2362 (2008)

    Article  CAS  Google Scholar 

  26. Arvinte, A., Rotariu, L., Bala, C., Gurban, A.M.: Synergistic effect of mediator–carbon nanotube composites for dehydrogenases and peroxidases based biosensors. Bioelectrochemistry 76, 107–114 (2009)

    Article  CAS  Google Scholar 

  27. Maroneze, C.M., Luz, R.C.S., Landers, R., Gushikem, Y.: SiO2/TiO2/Sb2O5/graphite carbon ceramic conducting material: preparation, characterization, and its use as an electrochemical sensor. J. Solid. State Electrochem 14, 115–121 (2010)

    Article  CAS  Google Scholar 

  28. Canevari, T.C., Vinhas, R.C.G., Landers, R., Gushikem, Y.: SiO2/SnO2/Sb2O5 microporous ceramic material for immobilization of meldola’s blue: application as an electrochemical sensor for NADH. Biosens. Bioelectron. 26, 2402–2406 (2011)

    Article  CAS  Google Scholar 

  29. Balamurugan, A., Ho, K.C., Chen, S.M., Huang, T.-Y.: Electrochemical sensing of NADH based on meldola blue immobilized silver nanoparticle-conducting polymer electrode. Coll Surf A: Physicochem Eng. Aspects 362, 1–7 (2010)

    Article  CAS  Google Scholar 

  30. Santhiago, M., Strauss, M., Pereira, M.P., Chagas, A.S., Bufon, C.C.B.: Direct drawing method of graphite onto paper for high performance flexible electrochemical sensors. ACS Appl. Mater Interfaces 9, 11959–11966 (2017)

    Article  CAS  Google Scholar 

  31. Titoiu, A.M., Lapauw, M., Petrareanu, G.N., Purcarea, C., Bolado, P.F., Marty, J.-L., Vasilescu(s), A.: Carbon nanofiber and meldola Blue based electrochemical sensor for NADH: Application to the detection of benzaldehyde. Electroanalysis 30, 1–14 (2018)

    Google Scholar 

  32. Titoiu, A.M., Petrareanu, G.N., Visinescu, D., Dinca, V., Bonciu, A., Mihailescu, C.N., Purcarea, C., Boukherroub, R., Szunerits, S., Vasilescu, A.: Flow injection enzymatic biosensor for aldehydes based on a meldola blue-Ni complex electrochemical mediator. Microchim Acta 187, 550 (2020)

    Article  CAS  Google Scholar 

  33. Westmacott KL, Crew AP, Doran O, Hart JP (2020) Novel, rapid, low-cost screen-printed (bio)sensors for the direct analysis of boar taint compounds androstenone and skatole in porcine adipose tissue: Comparison with a high-resolution gas chromatographic method. Biosens. Bioelectron. 150, 111837 (2020)

    Google Scholar 

  34. Garcia, C.A.B., Neto, G.D.O., Kubota, L.T., Grandin, L.A.: A new amperometric biosensor for fructose using a carbon paste electrode modified with silica gel coated with meldola’s blue and fructose-5-dehydrogenase. J. Electroanal Chem. 418, 147–151 (1996)

    Article  CAS  Google Scholar 

  35. Mao, L., Yamamoto, K.: Glucose and choline on-line biosensors based on electropolymerized Meldola’s blue. Talanta 51, 187–195 (2000)

    Article  CAS  Google Scholar 

  36. Santos, A.S., Pereira, A.C., Duran, N., Kubota, L.T.: Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and meldola’s blue on multi-wall carbon nanotube. Electrochim Acta 52, 215–220 (2006)

    Article  CAS  Google Scholar 

  37. Du, P., Liu, S., Wu, P., Cai, C.: Single-walled carbon nanotubes functionalized with poly(nile blue A) and their application to dehydrogenase-based biosensors. Electrochim Acta 53, 1811–1823 (2007)

    Article  CAS  Google Scholar 

  38. Du, P., Wu, P., Cai, C.: A glucose biosensor based on electrocatalytic oxidation of NADPH at single-walled carbon nanotubes functionalized with poly(nile blue A). J. Electroanal Chem. 624, 21–26 (2008)

    Article  CAS  Google Scholar 

  39. Nazemi, Z., Shams, E., Amini, M.K.: Construction of a biointerface for glucose oxidase through diazonium chemistry and electrostatic self-assembly technique. J. Solid. State Electrochem 20, 429–438 (2016)

    Article  CAS  Google Scholar 

  40. Ensafi, A.A., Ahmadi, Z., Asl, M.J., Rezaei, B.: Graphene nanosheets functionalized with nile blue as a stable support for the oxidation of glucose and reduction of oxygen based on redox replacement of Pd-nanoparticles via nickel oxide. Electrochim Acta 173, 619–629 (2015)

    Article  CAS  Google Scholar 

  41. Nasri, Z., Shams, E., Ahmadi, M.: A glucose biosensor based on direct attachment of in situ generated nile blue diazonium cations to the electrode surface. J. Electroanal Chem. 703, 146–152 (2013)

    Article  CAS  Google Scholar 

  42. Dong, H., Zhou, Y., Hao, Y., Zhao, L., Sun, S., Zhang, Y., Ye, B., Xu, M.: “Turn-on” ratiometric electrochemical detection of H2O2 in one drop of whole blood sample via a novel microelectrode sensor. Biosens. Bioelectron. 165, 112402 (2020)

    Google Scholar 

  43. Silva, W., Queiroz, A.C., Brett, C.M.A.: Nanostructured poly(phenazine)/Fe2O3 nanoparticle film modified electrodes formed by electropolymerization in ethaline—deep eutectic solvent. Microscopic and electrochemical characterization. Electrochim Acta 347, 136284 (2020)

    Google Scholar 

  44. Ju, H., Shen, C.: Electrocatalytic reduction and determination of dissolved oxygen at a poly(nile blue) modified electrode. Electroanalysis 13, 8–9 (2000)

    Google Scholar 

  45. Shervedani, R.K., Amini, A.: Preparation of graphene/nile blue nanocomposite: application for oxygen reduction reaction and biosensing. Electrochim. Acta 173, 354–363 (2015)

    Article  CAS  Google Scholar 

  46. Chen, X., Wang, F., Chen, Z.: An electropolymerized nile blue sensing film-based nitrite sensor and application in food analysis. Anal. Chim. Acta 623, 213–220 (2008)

    Article  CAS  Google Scholar 

  47. Kul, D., Ghica, M.E., Pauliukaite, R., Brett, C.M.A.: A novel amperometric sensor for ascorbic acid based on poly(Nile blue A) and functionalized multi-walled carbon nanotube modified electrodes. Talanta 111, 76–84 (2013)

    Article  CAS  Google Scholar 

  48. Prance, A., Coopersmith, K., Stobiecka, M., Hepel, M.: Biosensors for the detection of DNA damage by toxicants. ECS Trans. 33, 3–15 (2010)

    Article  CAS  Google Scholar 

  49. Jin, H., Zhao, C., Gui, R., Gao, X., Wang, Z.: Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal. Chim. Acta 1025, 154–162 (2018)

    Article  CAS  Google Scholar 

  50. Hossain, M.D.M., Moon, J.M., Gurudatt, N.G., Park, D.-S., Choi, C.S., Shim, Y.-B.: Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Biosens Bioelectron 142, 111515 (2019)

    Google Scholar 

  51. Gowthaman, N.S.K., Lim, H.N., Balakumar, V., Shankar, S. Ultrasonic synthesis of CeO2@organic dye nanohybrid: environmentally benign rabid electrochemical sensing platform for carcinogenic pollutant in water samples. Ultrason Sonochem 61, 104828 (2019)

    Google Scholar 

  52. Devi, C.L., Narayanan, S.S., Arumugam, S.: New electrochemical sensor for the detection of biological analytes using poly(amido amine) dendrimer and poly(nile blue)- modified electrode. J. Electroanal Chem. 855, 113486 (2019)

    Google Scholar 

  53. Ahammad, A.J.S., Shaikh, A.A., Jessy, N.J., Akter, T., Mamun, A.A., Bakshi, P.K.: Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto a gold nanoparticles-adsorbed poly(brilliant cresyl blue) film. J. Electrochem Soc. 162, B52–B56 (2015)

    Article  CAS  Google Scholar 

  54. Tome´, L.I.N., Brett, C.M.A.: Polymer/iron oxide nanoparticle modified glassy carbon electrodes for the enhanced detection of epinephrine. Electroanalysis 31, 1–8 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology – Science and Engineering Research Board (DST-SERB/CRG/2021/001048) for the financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saikrithika, S., Yashly, Y.K., Senthil Kumar, A. (2022). Quinones and Organic Dyes Based Redox-Active Organic Molecular Compounds Immobilized Surfaces for Electrocatalysis and Bioelectrocatalysis Applications. In: Gupta, R.K. (eds) Organic Electrodes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98021-4_22

Download citation

Publish with us

Policies and ethics