Skip to main content

Allelochemicals From Pteridium arachnoideum

  • Living reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 25 Accesses

Abstract

Pteridium arachnoideum, also known as the Neotropical bracken fern, is a plant species native to South America and an aggressive invader that, as well as other bracken species around the globe, represent a challenge for the management and conservation of biodiversity as they become dominant in degraded or anthropic areas, causing significant environmental changes. Much interest in the phytochemistry of Pteridium species exists especially because of the toxic and carcinogenic action of these plants when consumed by mammals, effects caused by the norsesquiterpene glycoside ptaquiloside. Polyphenolic compounds are the main chemical class of secondary metabolites in bracken species, although they are not considered the main toxic substances produced by them. Among these compounds, condensed tannins, such as proanthocyanidins and prodelphins derivatives, are the main ones, both being associated with anti-herbivory and UV radiation protection. Efforts to understand bracken super-dominance underlying mechanisms date back to the beginning of the twentieth century and are still not well understood. Early evidence pointed to the role of bracken phenolics as allelochemicals, secondary metabolites with interfering activity on neighboring plant development, soil microbiota, or soil properties. The production of such allelochemicals could lead to better competitive fitness, explaining bracken super-dominant behavior. The proanthocyanidin selliguein A is the only allelochemical isolated and identified to this day for all bracken species, found as the major secondary metabolite of P. arachnoideum green fronds and litter, present in the soil under Neotropical bracken patches in bioactive phytotoxic concentrations. The relation between abiotic stress and condensed tannin content in this plant and its possible relation to plant dominance mediated by allelopathy is discussed, as well as other open questions important to understanding and controlling one of the most common and aggressive plant species complexes in the world, from the point of view of its allelochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

IAS:

International Allelopathy Society

IC50:

Minimal concentration needed of a given bioactive substance to promote 50% of the desired effect

UV:

Ultraviolet radiation

References

  1. Rice EL (1984) Allelopathy. Academic, New York

    Google Scholar 

  2. Macías FA, Mejías FJ, Molinillo JM (2019) Recent advances in allelopathy for weed control: from knowledge to applications. Pest Manag Sci 75:2413–2436. https://doi.org/10.1002/ps.5355

    Article  CAS  PubMed  Google Scholar 

  3. Hierro JL, Callaway RM (2021) The ecological importance of allelopathy. Annu Rev Ecol Evol Syst 52:25–45. https://doi.org/10.1146/annurev-ecolsys-051120-030619

    Article  Google Scholar 

  4. Molisch H (2001) The influence of one plant on another: allelopathy. Scientific Publishers, Jodhpur

    Google Scholar 

  5. Rizvi SJH, Tahir M, Rizvi V, Kohli RK, Ansari A (2010) Allelopathic interactions in agroforestry systems. 18:773–796. https://doi.org/10.1080/07352689991309487

  6. IAS (2021) What is allelopathy? In: International allelopathy society. Available at https://allelopathy-society.osupytheas.fr/about/. Accessed 23 Oct 2022

  7. Macías FA, Durán AG, Molinillo JMG (2020) Allelopathy: the chemical language of plants. In: Kinghorn AD, Falk H, Gibbons S, Kobayashi J, Asakawa Y, Liu JK (eds) Progress in the chemistry of organic natural products. Springer, Cham

    Google Scholar 

  8. Santos-Sánchez NF, Salas-Coronado R, Hernández-Carlos B, Villanueva-Cañongo C, Santos-Sánchez NF, Salas-Coronado R, Hernández-Carlos B, Villanueva-Cañongo C (2019) Shikimic acid pathway in biosynthesis of phenolic compounds. In: Soto-Hernández M, García-Mateos R, Palma-Tenango M (eds) Plant physiological aspects of phenolic compounds. IntechOpen, London

    Google Scholar 

  9. Anulika NP, Ignatius EO, Raymond ES, Osasere OI, Abiola AH (2016) The chemistry of natural product: plant secondary metabolites. Int J Technol Enhancements Emerg Eng Res 4:1–9

    Google Scholar 

  10. Li ZH, Wang Q, Ruan X, de Pan C, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952. https://doi.org/10.3390/MOLECULES15128933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lotina-Hennsen B, King-Diaz B, Aguilar MI, Hernandez Terrones MG (2006) Plant secondary metabolites. Targets and mechanisms of allelopathy. In: Reigosa M, Pedrol N, González L (eds) Allelopathy. Springer, Dordrecht

    Google Scholar 

  12. Bonanomi G, Zotti M, Idbella M, Mazzoleni S, Abd-ElGawad AM (2021) Microbiota modulation of allelopathy depends on litter chemistry: mitigation or exacerbation? Sci Total Environ 776:145942. https://doi.org/10.1016/J.SCITOTENV.2021.145942

    Article  CAS  PubMed  Google Scholar 

  13. Lambers H, Oliveira RS (2019) Biotic influences: ecological biochemistry: allelopathy and defense against herbivores. Plant Physiol Ecol 541–581. https://doi.org/10.1007/978-3-030-29639-1_13

  14. Qu T, Du X, Peng Y, Guo W, Zhao C, Losapio G (2021) Invasive species allelopathy decreases plant growth and soil microbial activity. PLoS One 16:e0246685. https://doi.org/10.1371/JOURNAL.PONE.0246685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems – a review. Plant Soil 256:41–66. https://doi.org/10.1023/A:1026206511084

    Article  CAS  Google Scholar 

  16. Wang HH, Chen BJ, Hsu LM, Cheng YM, Liou YJ, Wang CY (2012) Allelopathic effects of bracken fern (Pteridium aquilinum L. Kuhn) in Taiwan. Allelopath J 27:97–110

    Google Scholar 

  17. Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539. https://doi.org/10.1007/s00425-003-1054-z

    Article  CAS  PubMed  Google Scholar 

  18. Silva ER, Overbeck GE, Soares GLG (2017) Something old, something new in allelopathy review: what grassland ecosystems tell us. Chemoecology 27:217–231. https://doi.org/10.1007/S00049-017-0249-X/FIGURES/5

    Article  Google Scholar 

  19. Scavo A, Mauromicale G (2021) Crop Allelopathy for sustainable weed management in agroecosystems: knowing the present with a view to the future. Agronomy 11:2104. https://doi.org/10.3390/AGRONOMY11112104

    Article  CAS  Google Scholar 

  20. Hanada K, Manghwar H, Zaman W, Ullah R, Aslam Z, Attia H, Sultan K, Alamer KH, Mansha MZ, Althobaiti AT, Amin N, al Kashgry T, Algethami B, Uz Zaman Q (2022) Sorghum allelopathy: alternative weed management strategy and its impact on mung bean productivity and soil rhizosphere properties. Life 12:1359. https://doi.org/10.3390/LIFE12091359

    Article  Google Scholar 

  21. Başaran F (2020) Ecological aspects of allelopathy. Int J Agric For Life Sci 5:80–86

    Google Scholar 

  22. Sinkkonen A (2006) Ecological relationships and allelopathy. In: Reigosa MJ, González L, Pedrol N (eds) Allelopathy. Springer, Dordrecht

    Google Scholar 

  23. Blair AC, Weston LA, Nissen SJ, Brunk GR, Hufbauer RA (2008) The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol Invasions 11:325–332. https://doi.org/10.1007/s10530-008-9250-1

    Article  Google Scholar 

  24. Duke SO (2015) Proving allelopathy in crop–weed interactions. Weed Sci 63:121–132. https://doi.org/10.1614/WS-D-13-00130.1

    Article  Google Scholar 

  25. Romeo JT (2011) Raising the beam: moving beyond phytotoxicity. J Chem Ecol 26:2011–2014

    Article  Google Scholar 

  26. Colegate SM, Molyneux RJ (2008) Bioactive natural products: detection, isolation, and structural determination, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  27. Inderjit, Callaway RM (2003) Experimental designs for the study of allelopathy. Plant Soil 256:1–11

    Article  CAS  Google Scholar 

  28. Matsumoto S, Varela RM, Palma M, Molinillo JMG, Lima IS, Barroso CG, Macías FA (2014) Bio-guided optimization of the ultrasound-assisted extraction of compounds from Annona glabra L. leaves using the etiolated wheat coleoptile bioassay. Ultrason Sonochem 21:1578–1584. https://doi.org/10.1016/j.ultsonch.2014.01.024

    Article  CAS  PubMed  Google Scholar 

  29. Cala A, Salcedo JR, Torres A, Varela RM, Molinillo JMG, Macías FA (2021) A study on the phytotoxic potential of the seasoning herb marjoram (Origanum majorana L.) leaves. Molecules 26:3356. https://doi.org/10.3390/molecules26113356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jatoba LJ, Varela RM, Molinillo JMG, Din ZU, Gualtieri SCJ, Rodrigues-Filho E, Macías FA (2016) Allelopathy of bracken fern (Pteridium arachnoideum): new evidence from green fronds, litter, and soil. PLoS One 11:e0161670. https://doi.org/10.1371/JOURNAL.PONE.0161670

    Article  Google Scholar 

  31. Kalisz S, Kivlin SN, Bialic-Murphy L (2021) Allelopathy is pervasive in invasive plants. Biol Invasions 23:367–371. https://doi.org/10.1007/S10530-020-02383-6/FIGURES/1

    Article  Google Scholar 

  32. Adedeji AA, Babalola OO (2020) Secondary metabolites as plant defensive strategy: a large role for small molecules in the near root region. Planta 252:1–12. https://doi.org/10.1007/S00425-020-03468-1/TABLES/2

    Article  Google Scholar 

  33. Kato-Noguchi H (2015) Involvement of allelopathy in the formation of monospecific colonies of ferns. Nat Prod Commun 10:811–814. https://doi.org/10.1177/1934578X1501000526

    Article  PubMed  Google Scholar 

  34. Orrock JL, Dutra HP, Marquis RJ, Barber N (2015) Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species. Ecology 96:1052–1061. https://doi.org/10.1890/14-0732.1

    Article  PubMed  Google Scholar 

  35. Greer MJ, Wilson GWT, Hickman KR, Wilson SM (2014) Experimental evidence that invasive grasses use allelopathic biochemicals as a potential mechanism for invasion: chemical warfare in nature. Plant Soil 385:165–179. https://doi.org/10.1007/s11104-014-2209-3

    Article  CAS  Google Scholar 

  36. Suazo-Ortuño I, Lopez-Toledo L, Alvarado-Díaz J, Martínez-Ramos M (2015) Land-use change dynamics, soil type and species forming mono-dominant patches: the case of Pteridium aquilinum in a neotropical rain forest region. Biotropica 47:18–26. https://doi.org/10.1111/btp.12181

    Article  Google Scholar 

  37. Carvalho TF, Carvalho AC, Zanuncio JC, de Oliveira MLR, Machado ELM, José AC, Santos JB, Pereira IM (2022) Does invasion by Pteridium aquilinum (Dennstaedtiaceae) affect the ecological succession in Atlantic Forest areas after a fire? Environ Sci Pollut Res 29:14195–14205. https://doi.org/10.1007/S11356-021-16761-7/FIGURES/4

    Article  Google Scholar 

  38. Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436. https://doi.org/10.2307/3868432

    Article  Google Scholar 

  39. Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380. https://doi.org/10.1126/science.1083245

    Article  CAS  PubMed  Google Scholar 

  40. Inderjit, Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662. https://doi.org/10.1016/j.tree.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen JA, Whigham PA, Frew RD, Callaway RM, Dickinson KJM (2013) Invasion essentials: does secondary chemistry plasticity contribute to the invasiveness of Thymus vulgaris L.? Chemoecology 24:15–27. https://doi.org/10.1007/s00049-013-0142-1

    Article  CAS  Google Scholar 

  42. Fabbro C, Prati D (2015) The relative importance of immediate allelopathy and allelopathic legacy in invasive plant species. Basic Appl Ecol 16:28–35. https://doi.org/10.1016/j.baae.2014.10.007

    Article  Google Scholar 

  43. Kato-Noguchi H, Saito Y, Ohno O, Suenaga K (2013) Allelopathy is involved in the formation of pure colonies of the fern Gleichenia japonica. J Plant Physiol 170:577–582. https://doi.org/10.1016/j.jplph.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  44. Kato-Noguchi H, Saito Y, Suenaga K (2012) Involvement of allelopathy in the establishment of pure colony of Dicranopteris linearis. Plant Ecol 213:1937–1944. https://doi.org/10.1007/s11258-012-0096-3

    Article  Google Scholar 

  45. Silva USR, Matos DMS (2006) The invasion of Pteridium aquilinum and the impoverishment of the seed bank in fire prone areas of Brazilian Atlantic Forest. Biodivers Conserv 15:3035–3043. https://doi.org/10.1007/s10531-005-4877-z

    Article  Google Scholar 

  46. Schwartsburd PB, de Moraes PLR, Lopes-Mattos KLB (2014) Recognition of two morpho-types in eastern South American brackens (Pteridium-Dennstaedtiaceae-Polypodiopsida). Phytotaxa 170:103–117. https://doi.org/10.11646/phytotaxa.170.2.3

    Article  Google Scholar 

  47. Alonso-Amelot ME (2002) The chemistry and toxicology of bioactive compounds in bracken fern (Pteridium spp), with special reference to chemical ecology and carcinogenesis. In: Atta-ur Rahman (ed) Studies in natural products chemistry, vol 26. Elsevier, Berlin

    Google Scholar 

  48. Der JP, Thomson JA, Stratford JK, Wolf PG (2009) Global chloroplast phylogeny and biogeography of bracken (Pteridium; Dennstaedtiaceae). Am J Bot 96:1041–1049. https://doi.org/10.3732/ajb.D0800333

    Article  PubMed  Google Scholar 

  49. Gil da Costa RM, Bastos MMSM, Oliveira PA, Lopes C (2012) Bracken-associated human and animal health hazards: chemical, biological and pathological evidence. J Hazard Mater 203–204:1–12. https://doi.org/10.1016/j.jhazmat.2011.12.046

    Article  CAS  PubMed  Google Scholar 

  50. Royo AA, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36:1345–1362. https://doi.org/10.1139/X06-025

    Article  Google Scholar 

  51. Ghorbani J, le Duc MG, McAllister HA, Pakeman RJ, Marrs RH (2006) Effects of the litter layer of Pteridium aquilinum on seed banks under experimental restoration. Appl Veg Sci 9:127–136

    Article  Google Scholar 

  52. Maren I, Vandvik V, Ekelund K (2008) Restoration of bracken-invaded Calluna vulgaris heathlands: effects on vegetation dynamics and non-target species. Biol Conserv 141:1032–1042. https://doi.org/10.1016/j.biocon.2008.01.012

    Article  Google Scholar 

  53. Stewart G, Cox E, le Duc M, Pakeman R, Pullin A, Marrs R (2008) Control of Pteridium aquilinum: meta-analysis of a multi-site study in the UK. Ann Bot 101:957–970. https://doi.org/10.1093/aob/mcn020

    Article  PubMed  PubMed Central  Google Scholar 

  54. Griffiths RP, Filan T (2007) Effects of bracken fern invasions on harvested site soils in Pacific Northwest (USA) Coniferous Forests. Northwest Sci 81:191–198

    Article  CAS  Google Scholar 

  55. Olivares E, Peña E, Benítez M (2007) Pteridium caudatum (L.) Maxon behaves as a potassium plant and accumulates aluminum in the subterranean organs. Am Fern J 97:81–94

    Article  Google Scholar 

  56. Adie H, Richert S, Kirkman KP, Lawes MJ (2011) The heat is on: frequent high intensity fire in bracken (Pteridium aquilinum) drives mortality of the sprouting tree Protea caffra in temperate grasslands. Plant Ecol 212:2013–2022. https://doi.org/10.1007/s11258-011-9945-8

    Article  Google Scholar 

  57. DeLuca TH, Zewdie SA, Zackrisson O, Healey JR, Jones DL (2012) Bracken fern (Pteridium aquilinum L. kuhn) promotes an open nitrogen cycle in heathland soils. Plant Soil 367:521–534. https://doi.org/10.1007/s11104-012-1484-0

    Article  CAS  Google Scholar 

  58. Baptiste AJ, Macario PA, Islebe GA, Vargas-Larreta B, Pool L, Valdez-Hernández M, López-Martínez JO (2019) Secondary succession under invasive species (Pteridium aquilinum) conditions in a seasonal dry tropical forest in southeastern Mexico. Peer J 2019:e6974. https://doi.org/10.7717/PEERJ.6974/SUPP-1

    Article  Google Scholar 

  59. Miatto RC, Silva IA, Silva-Matos DM, Marrs RH (2011) Woody vegetation structure of Brazilian Cerrado invaded by Pteridium arachnoideum (Kaulf.) Maxon (Dennstaedtiaceae). Flora – Morphol Distrib Funct Ecol Plants 206:757–762. https://doi.org/10.1016/j.flora.2010.12.001

    Article  Google Scholar 

  60. Agarwal K, Haldar S, Boland W, Venkatesan R (2018) Chemical ecology of bracken ferns. In: Nowicki L, Kowalska A (eds) Ferns: ecology, importance to humans and threats. Nova Science Publishers, Hauppauge

    Google Scholar 

  61. Matos DMDS, Belinato TA (2010) Interference of Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) on the establishment of rainforest trees. Braz J Biol 70:311–316

    Article  Google Scholar 

  62. Ooka JK, Owens DK (2018) Allelopathy in tropical and subtropical species. Phytochem Rev 17:1225–1237. https://doi.org/10.1007/S11101-018-9596-7/TABLES/1

    Article  CAS  Google Scholar 

  63. Carey MP, Sanderson BL, Barnas KA, Olden JD (2012) Native invaders – challenges for science, management, policy, and society. Front Ecol Environ 10:373–381. https://doi.org/10.1890/110060

    Article  Google Scholar 

  64. Cassini MH (2020) A review of the critics of invasion biology. Biol Rev 95:1467–1478. https://doi.org/10.1111/BRV.12624

    Article  PubMed  Google Scholar 

  65. Pivello VR, Vieira MV, Grombone-Guaratini MT, Matos DMS (2018) Thinking about super-dominant populations of native species – examples from Brazil. Perspect Ecol Conserv 16:74–82. https://doi.org/10.1016/J.PECON.2018.04.001

    Article  Google Scholar 

  66. Funk JL, Standish RJ, Stock WD, Valladares F (2016) Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 97:75–83. https://doi.org/10.1890/15-0974.1

    Article  PubMed  Google Scholar 

  67. Guiaşu RC, Tindale CW (2018) Logical fallacies and invasion biology. Biol Philos 33(5):1–24. https://doi.org/10.1007/S10539-018-9644-0

    Article  Google Scholar 

  68. Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24:497–504. https://doi.org/10.1016/j.tree.2009.03.016

    Article  PubMed  Google Scholar 

  69. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  70. Menezes GSC, Cazetta E, Dodonov P (2019) Vegetation structure across fire edges in a Neotropical rain forest. For Ecol Manag 453:117587. https://doi.org/10.1016/J.FORECO.2019.117587

    Article  Google Scholar 

  71. Tiberio FCS, Xavier RO, Dodonov P, Silva Matos DM (2022) Fire has short-term negative effects on a super-dominant native fern, Pteridium arachnoideum (Dennstaedtiaceae), in a Brazilian savanna. Nat Conserv Res 7:15–25. https://doi.org/10.24189/ncr.2022.027

    Article  Google Scholar 

  72. Xavier RO, Alday JG, Marrs RH, Matos DMS (2016) The role of Pteridium arachnoideum (Kaulf) on the seed bank of the endangered Brazilian Cerrado. Braz J Biol 76:256–267. https://doi.org/10.1590/1519-6984.21814

    Article  CAS  PubMed  Google Scholar 

  73. Silva Matos DM, Xavier RO, Tiberio FCS, Marrs RH (2014) A comparative study of resource allocation in Pteridium in different Brazilian ecosystems and its relationship with European studies. Braz J Biol 74:156–165. https://doi.org/10.1590/1519-6984.22012

    Article  CAS  PubMed  Google Scholar 

  74. Knuesting J, Brinkmann MC, Silva B, Schorsch M, Bendix J, Beck E, Scheibe R (2018) Who will win where and why? An ecophysiological dissection of the competition between a tropical pasture grass and the invasive weed Bracken over an elevation range of 1000 m in the tropical Andes. PLoS One 13:e0202255. https://doi.org/10.1371/journal.pone.0202255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Santos MG, Kelecom A, Paiva SR, Moraes MG, Rocha L, Garrett R (2010) Phytochemical studies in pteridophytes growing in Brazil: a review. Am J Plant Sci Biotechnol 4:113–125

    Google Scholar 

  76. Finnie J, Windsor P, Kessell A (2011) Neurological diseases of ruminant livestock in Australia. II: toxic disorders and nutritional deficiencies. Aust Vet J 89:247–253. https://doi.org/10.1111/j.1751-0813.2011.00793.x

    Article  Google Scholar 

  77. Furlan FH, Mendes ERS, Ducatti KR, Marcon GC, Dombrosky T, Amorim TM, Riet-Correa F (2014) Acute poisoning by Pteridium arachnoideum and Pteridium caudatum in cattle and distribution of the plants in Mato Grosso. Pesqui Vet Bras 34:343–348. https://doi.org/10.1590/S0100-736X2014000400008

    Article  Google Scholar 

  78. Wang CY, Chiu CW, Pamukcu AM, Bryan GT (1976) Identification of carcinogenic tannin isolated from bracken fern (Pteridium aquilinum). J Natl Cancer Inst 56:33–36. https://doi.org/10.1093/jnci/56.1.33

    Article  CAS  PubMed  Google Scholar 

  79. Pamukcu AM, Wang CY, Hatcher J, Bryan GT (1980) Carcinogenicity of tannin and tannin-free extracts of bracken fern (Pteridium aquilinum) in rats. J Natl Cancer Inst 65:131–136. https://doi.org/10.1093/jnci/65.1.131

    Article  CAS  PubMed  Google Scholar 

  80. Pamukcu AM, Yalciner S, Hatcher JF, Bryan GT (1980) Quercetin, a rat intestinal and bladder carcinogen present in bracken fern (Pteridium aquilinum). Cancer Res 40:3468–3472

    CAS  PubMed  Google Scholar 

  81. Saito M, Umeda M, Enomoto M, Hatanaka Y, Natori S, Yoshihira K, Fukuoka M, Kuroyanagi M (1975) Cytotoxicity and carcinogenicity of pterosins and pterosides, 1-indanone derivatives from bracken (Pteridium aquilinum). Experientia 31:829–831. https://doi.org/10.1007/BF01938490

    Article  CAS  PubMed  Google Scholar 

  82. Van der Hoeven JCM, Lagerweij WJ, Posthumus MA, Veldhuizen A, Holterman HAJ (1983) Aquilide A, a new mutagenic compound isolated from bracken fern (Pteridium aquilinum (L.) Kuhn). Carcinogenesis 4:1587–1590. https://doi.org/10.1093/carcin/4.12.1587

    Article  PubMed  Google Scholar 

  83. Fletcher MT, Brock IJ, Reichmann KG, McKenzie RA, Blaney BJ (2011) Norsesquiterpene glycosides in bracken ferns (Pteridium esculentum and Pteridium aquilinum subsp. wightianum) from Eastern Australia: reassessed poisoning risk to animals. J Agric Food Chem 59:5133–5138. https://doi.org/10.1021/jf104267c

    Article  CAS  PubMed  Google Scholar 

  84. Prakash AS, Pereira TN, Smith BL, Shaw G, Seawright AA (2006) Mechanism of bracken fern carcinogenesis: evidence for H-ras activation via initial adenine alkylation by ptaquiloside. Nat Toxins 4:221–227. https://doi.org/10.1002/(SICI)(1996)4:5<221::AID-NT4>3.0.CO;2-Q

    Article  Google Scholar 

  85. Hojo-Souza NS, Carneiro CM, dos Santos RC (2010) Pteridium aquilinum: what we know and what is yet to be learnt. Biosci J 26:798–808

    Google Scholar 

  86. Alonso-Amelot ME, Oliveros A, Calcagno MP, Arellano E (2001) Bracken adaptation mechanisms and xenobiotic chemistry. Pure Appl Chem 73:549–553. https://doi.org/10.1351/pac200173030549

    Article  CAS  Google Scholar 

  87. Alonso-Amelot ME, Oliveros-Bastidas A (2005) Kinetics of the natural evolution of hydrogen cyanide in plants in neotropical Pteridium arachnoideum and its ecological significance. J Chem Ecol 31:315–331. https://doi.org/10.1007/s10886-005-1343-z

    Article  CAS  PubMed  Google Scholar 

  88. Tempel AS (1981) Field studies of the relationship between herbivore damage and tannin concentration in bracken (Pteridium aquilinum Kuhn). Oecologia 51:97–106. https://doi.org/10.1007/BF00344659

    Article  PubMed  Google Scholar 

  89. Alonso-Amelot ME, Oliveros-Bastidas A, Calcagno-Pisarelli MP (2007) Phenolics and condensed tannins of high altitude Pteridium arachnoideum in relation to sunlight exposure, elevation, and rain regime. Biochem Syst Ecol 35:1–10. https://doi.org/10.1016/j.bse.2006.04.013

    Article  CAS  Google Scholar 

  90. Alonso-Amelot ME, Oliveros A, Calcagno-Pisarelli MP (2004) Phenolics and condensed tannins in relation to altitude in neotropical Pteridium spp. Biochem Syst Ecol 32:969–981. https://doi.org/10.1016/j.bse.2004.03.005

    Article  CAS  Google Scholar 

  91. Gliessman SR, Muller CH (1972) The phytotoxic potential of bracken, Pteridium aquilinum (L.) Kuhn. Madrono 21:299–304

    Google Scholar 

  92. Gliessman SR, Muller CH (1978) The allelopathic mechanisms of dominance in bracken (Pteridium aquilinum) in Southern California. J Chem Ecol 4:337–362

    Article  Google Scholar 

  93. Gliessman SR (1976) Allelopathy in a broad spectrum of environments as illustrated by bracken. Bot J Linn Soc 73:95–104. https://doi.org/10.1111/J.1095-8339.1976.TB02015.X

    Article  Google Scholar 

  94. Glass ADM (1976) The allelopathic potential of phenolic acids associated with the rhizosphere of Pteridium aquilinum. Can J Bot 54:2440–2444. https://doi.org/10.1139/b76-259

    Article  CAS  Google Scholar 

  95. Taylor JE, Thomson JA (1990) Allelopathic activity of frond run-off from Pteridium esculentum. In: Taylor JA, Smith RT (eds) Bracken biology and management. Australian Institute of Agricultural Science – AIAS, Sydney

    Google Scholar 

  96. Mira YD, Ramírez LA, Londoño LF, Castañeda DA, Mira YD, Ramírez LA, Londoño LF, Castañeda DA (2021) Allelopathic effects of common bracken (Pteridium aquilinum (L.) Kuhn) on germination and growth of economically important weeds. Chil J Agric Anim Sci 37:290–300. https://doi.org/10.29393/CHJAAS37-30AEYD40030

    Article  Google Scholar 

  97. de la Rosa LA, Moreno-Escamilla JO, Rodrigo-García J, Alvarez-Parrilla E (2019) Phenolic compounds. In: Yahia E, Carrilo-Lopez A (eds) Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing, Elsevier, Amsterdam

    Google Scholar 

  98. Sarg TM, Abbas FA, El-Sayed ZI, Mustafa AM (2011) Two new polyphenolic compounds from Ficus retusa L. “variegata” and the biological activity of the different plant extracts. J Pharmacogn Phytother 3:89–100

    CAS  Google Scholar 

  99. Wang L, Lou G, Ma Z, Liu X (2011) Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chem 126:1081–1087. https://doi.org/10.1016/j.foodchem.2010.11.133

    Article  CAS  Google Scholar 

  100. Nakashima S, Oda C, Masuda S, Tagashira M, Kanda T (2012) Isolation and structure elucidation of tetrameric procyanidins from unripe apples (Malus pumila cv. Fuji) by NMR spectroscopy. Phytochemistry 83:144–152. https://doi.org/10.1016/j.phytochem.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  101. Moctezuma C, Hammerbacher A, Heil M, Gershenzon J, Méndez-Alonzo R, Oyama K (2014) Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides. J Chem Ecol 40:458–467. https://doi.org/10.1007/s10886-014-0431-3

    Article  CAS  PubMed  Google Scholar 

  102. Hättenschwiler S, Jørgensen HB (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–763. https://doi.org/10.1111/j.1365-2745.2010.01671.x

    Article  CAS  Google Scholar 

  103. Coq S, Souquet J-M, Meudec E, Cheynier V, Hättenschwiler S (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2080–2091. https://doi.org/10.1890/09-1076.1

    Article  PubMed  Google Scholar 

  104. Smolander A, Kanerva S, Adamczyk B, Kitunen V (2011) Nitrogen transformations in boreal forest soils – does composition of plant secondary compounds give any explanations? Plant Soil 350:1–26. https://doi.org/10.1007/s11104-011-0895-7

    Article  CAS  Google Scholar 

  105. Jatoba LJ (2016) Alelopatia em Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae). São Carlos Federal University, São Carlos

    Google Scholar 

  106. Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054:95–111. https://doi.org/10.1016/J.CHROMA.2004.08.059

    Article  CAS  PubMed  Google Scholar 

  107. Xavier R, Marques U, Pivello V, Marrs R, Abilleira P, Nascimento JL, Silva Matos D (2022) Combining mechanical removal and tree planting to restore montane atlantic forests dominated by the Neotropical Bracken (Pteridium arachnoideum). SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4237683

  108. Ghorbani J, le Duc MG, Mcallister HA, Pakeman RJ, Marrs RH (2007) Temporal responses of propagule banks during ecological restoration in the United Kingdom. Restor Ecol 15:103–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana de Jesus Jatoba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jatoba, L.d.J. (2023). Allelochemicals From Pteridium arachnoideum. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-97415-2_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97415-2_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97415-2

  • Online ISBN: 978-3-030-97415-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics