Skip to main content

Pterin-Containing Microbial Molybdenum Enzymes

  • Chapter
  • First Online:
Microbial Metabolism of Metals and Metalloids

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 10))

  • 871 Accesses

Abstract

In this chapter, several facets of microbial molybdenum enzymes are discussed. First, the sources and uptake of molybdenum into cells, as well as cofactor synthesis, are reviewed. Genes involved in cofactor synthesis are mentioned along with whether or not they have a well-defined function. The biogeochemical importance as well as evolutionary origin of the cofactor and relationship to phylogenetic classification are examined. Representative structures of microbial molybdenum enzymes from the three main families (xanthine oxidase, sulfite oxidase, and dimethyl sulfoxide (DMSO) reductase) are also included. The functions of these enzyme families have been well accepted. This chapter also highlights select general mechanisms that are still under discussion, such as oxygen atom transfer (OAT) and hydroxylation, as well as catalytic cycles of specific enzymes. The chapter also includes sections on amino acids near the metal center and other amino acids that influence either substrate specificity or mechanistic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Barajas E, Díaz-Pérez C, Ramírez-Díaz MI, Riveros-Rosas H, Cervantes C (2011) Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24:687–707. https://doi.org/10.1007/s10534-011-9421-x

    Article  CAS  PubMed  Google Scholar 

  • Albert A, Brown D (1954) Purine studies. Part I. Stability to acid and alkali. Solubility. Ionization. Comparison with pteridines. J Chem Soc 1954:2060–2071

    Article  Google Scholar 

  • Anderson GL, Williams J, Hille R (1992) The purification adn characterization of Arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682

    Article  CAS  PubMed  Google Scholar 

  • Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano J-M et al (2003) Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nat Struct Biol 10:928–934. https://doi.org/10.1038/nsb994

    Article  CAS  PubMed  Google Scholar 

  • Astashkin AV, Johnson-Winters K, Klein EL, Byrne RS, Hille R, Raitsimring AM et al (2007) Direct demonstration of the presence of coordinated sulfate in the reaction pathway of Arabidopsis thaliana sulfite oxidase using 33S labeling and ESEEM spectroscopy. J Am Chem Soc 129:14800–14810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axley M, Grahame DA, Stadtman TC (1990) Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem 265:18213–18218

    Article  CAS  PubMed  Google Scholar 

  • Badalyan A, Neumann-Schaal M, Leimkühler S, Wollenberger U (2013) A biosensor for aromatic aldehydes comprising the mediator dependent PaoABC-aldehyde oxidoreductase. Electroanalysis 25:101–108

    Article  CAS  Google Scholar 

  • Basu P, Burgmayer SJN (2011) Pterin chemistry and its relationship to the molybdenum cofactor. Coord Chem Rev 255:1016–1038. https://doi.org/10.1016/j.ccr.2011.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu P, Kail BW, Young CG (2010) Influence of the oxygen atom acceptor on the reaction coordinate and mechanism of oxygen atom transfer from the Dioxo-Mo(VI) complex, TpiPrMoO2(OPh), to tertiary phosphines. Inorg Chem 49:4895–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu P, Nemykin VN, Sengar RS (2003) Syntheses, spectroscopy, and redox chemistry of encapsulated Oxo-Mo(V) centers: implications for Pyranopterin-containing molybdoenzymes. Inorg Chem 42:7489–7501

    Article  CAS  PubMed  Google Scholar 

  • Basu P, Nemykin VN, Sengar RS (2009) Substituent effect on oxygen atom transfer reactivity from oxomolybdenum centers: synthesis, structure, electrochemistry, and mechanism. Inorg Chem 48:6303–6313

    Article  CAS  PubMed  Google Scholar 

  • Bertero M, Rothery R, Palak M, Hou C, Lim D, Blasco F et al (2003) Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nature Struct Biol 10:681–687. https://doi.org/10.1038/nsb969

    Article  CAS  PubMed  Google Scholar 

  • Biaso F, Burlat B, Guigliarelli B (2012) DFT investigation of the molybdenum cofactor in periplasmic nitrate reductases: structure of the Mo(V) EPR-active species. Inorg Chem 51:3409–3419. https://doi.org/10.1021/ic201533p

    Article  CAS  PubMed  Google Scholar 

  • Bilen S, Dick WA (2011) Sulfite oxidase enzyme activity in soil. Biol Fertil Soils 47:647–654

    Article  CAS  Google Scholar 

  • Boer DR, Thapper A, Brondino CD, Romão MJ, Moura JJ (2004) X-ray crystal structure and EPR spectra of “Arsenite-inhibited” Desulfovibrio g igas aldehyde dehydrogenase: A member of the xanthine oxidase family. J Am Chem Soc 126:8614–8615

    Article  CAS  PubMed  Google Scholar 

  • Bonin I, Martins BM, Purvanov V, Fetzner S, Huber R, Dobbek H (2004) Active site geometry and substrate recognition of the molybdenum hydroxylase quinoline 2-oxidoreductase. Structure 12:1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Bortels H (1930) Molybdenum as a catalyzer in biological nitrogen-fixation. Arch Mikrobior 1:333–342

    Article  CAS  Google Scholar 

  • Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Britannica T Editors of Encyclopaedia (2020) Peter Jacob Hjelm. Accessed https://www.britannica.com/biography/Peter-Jacob-Hjelm

  • Buc J, Santini CL, Giordani R, Czjzek M, Wu LF, Giordano G (1999) Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli. Mol Microbiol 32:159–168

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira NMFSA, Gonzalez PJ, Brondino CD, Romao MJ, Romao CC, Moura I et al (2009) The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase. J Comput Chem 30:2466–2484. https://doi.org/10.1002/jcc.21280

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira NMFSA, Gonzalez PJ, Fernandes PA, Moura JJG, Ramos MJ (2015) Periplasmic nitrate reductase and Formate dehydrogenase: similar molecular architectures with very different enzymatic activities. Acc Chem Res 48:2875–2884. https://doi.org/10.1021/acs.accounts.5b00333

    Article  CAS  PubMed  Google Scholar 

  • Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nature Rev Microbiol 2:569–580

    Article  CAS  Google Scholar 

  • Cobb N, Conrads T, Hille R (2005) Mechanistic studies of Rhodobacter sphaeroides Me2SO reductase. J Biol Chem 280:11007–11017

    Article  CAS  PubMed  Google Scholar 

  • Coelho C, Gonzalez PJ, Moura JG, Moura I, Trincao J, Romao MJ (2011) The crystal structure of Cupriavidus necator nitrate reductase in oxidized and partially reduced states. J Mol Biol 408:932–948. https://doi.org/10.1016/j.jmb.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  • Constantinidou C, Hobman JL, Griffiths L, Patel MD, Penn CW, Cole JA et al (2006) A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281:4802–4815

    Article  CAS  PubMed  Google Scholar 

  • Contreras I, Toro CS, Troncoso G, Mora GC (1997) Salmonella typhi mutants defective in anaerobic respiration are impaired in their ability to replicate within epithelial cells. Microbiology 143(Pt 8):2665–2672. https://doi.org/10.1099/00221287-143-8-2665

    Article  CAS  PubMed  Google Scholar 

  • Coughlan M (1983) The role of molybdenum in human biology. J Inherit Metabol Dis 6:70–77

    Article  CAS  Google Scholar 

  • Czjzek M, Dos Santos J-P, Pommier J, Giordano G, Méjean V, Haser R (1998) Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J Mol Biol 284:435–447

    Article  CAS  PubMed  Google Scholar 

  • Dias J, Than M, Humm A, Bourenkov GP, Bartunik HD, Bursakov S et al (1999) Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Structure 7:65–79. https://doi.org/10.1016/s0969-2126(99)80010-0

    Article  CAS  PubMed  Google Scholar 

  • Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Catalysis at a dinuclear [CuSMo (O) OH] cluster in a CO dehydrogenase resolved at 1.1-Å resolution. Proc Natl Acad Sci U S A 99:15971–15976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbek H, Gremer L, Meyer O, Huber R (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc Natl Acad Sci U S A 96:8884–8889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Wang J, Fu H, Zhou G, Shi M, Gao H (2012) A Crp-dependent two-component system regulates nitrate and nitrite respiration in Shewanella oneidensis. PLoS One 7:e51643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle WF (2000) The nature of the universal ancestor and the evolution of the proteome. Curr Opin Struct Biol 10:355–358. https://doi.org/10.1016/S0959-440X(00)00096-8

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos J-P, Iobbi-Nivol C, Couillault C, Giordano G, Méjean V (1998) Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species. J Mol Biol 284:421–433

    Article  CAS  PubMed  Google Scholar 

  • Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9:125–132

    Article  CAS  PubMed  Google Scholar 

  • Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF (2000a) Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci U S A 97:10723–10728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF (2000b) Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci 97:10723–10728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer B, Enemark JH, Basu P (1998) A chemical approach to systematically designate the pyranopterin centers of molybdenum and tungsten enzymes and synthetic models. J Inorg Biochem 72:13–21

    Article  CAS  PubMed  Google Scholar 

  • Fourmond V, Burlat B, Dementin S, Arnoux P, Sabaty M, Boiry S et al (2008) Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other Molybdoenzymes from the DMSO reductase family. J Phys Chem B 112:15478–15486. https://doi.org/10.1021/jp807092y

    Article  CAS  PubMed  Google Scholar 

  • Gennaris A, Ezraty B, Henry C, Agrebi R, Vergnes A, Oheix E et al (2015) Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature 528:409–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George GN, Pickering IJ, Pushie MJ, Nienaber K, Hackett MJ, Ascone I et al (2012) X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples. J Synchro Rad 19:875–886

    Article  CAS  Google Scholar 

  • Giudici-Orticoni M-T, Samama J-P, Ilbert M, Méjean V, Iobbi-Nivol C (2003) Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 278:28787–28792

    Article  PubMed  CAS  Google Scholar 

  • Glasser NR, Oyala PH, Osborne TH, Santini JM, Newman DK (2018) Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations. Proc Natl Acad Sci 115:E8614–E8623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnandt E, Schimpf J, Harter C, Hoeser J, Friedrich T (2017) Reduction of the off-pathway iron-sulphur cluster N1a of Escherichia coli respiratory complex I restrains NAD+ dissociation. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • Grimaldi S, Schoepp-Cothenet B, Ceccaldi P, Guigliarelli B, Magalon A (2013) The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1827:1048–1085

    Article  CAS  Google Scholar 

  • Gutteridge S, Tanner S, Bray R (1978) The molybdenum centre of native xanthine oxidase. Evidence for proton transfer from substrates to the centre and for existence of an anion-binding site. Biochem J 175:869–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha Y, Tenderholt AL, Holm RH, Hedman B, Hodgson KO, Solomon EI (2014) Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on Monooxo MoIV and Bisoxo MoVI Bis-dithiolenes: insights into the mechanism of Oxo transfer in sulfite oxidase and its relation to the mechanism of DMSO reductase. J Am Chem Soc 136:9094–9105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen WR (2011) Cellular uptake of molybdenum and tungsten. Coord Chem Rev 255:1117–1128

    Article  CAS  Google Scholar 

  • Hänzelmann P, Dobbek H, Gremer L, Huber R, Meyer O (2000) The effect of intracellular molybdenum in Hydrogenophaga pseudoflava on the crystallographic structure of the seleno-molybdo-iron-sulfur flavoenzyme carbon monoxide dehydrogenase. J Mol Biol 301:1221–1235

    Article  PubMed  CAS  Google Scholar 

  • Havelius KG, Reschke S, Horn S, Döring A, Niks D, Hille R et al (2011) Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli. Inorg Chem 50:741–748

    Article  CAS  PubMed  Google Scholar 

  • Havemeyer A, Bittner F, Wollers S, Mendel R, Kunze T, Clement B (2006) Identification of the missing component in the mitochondrial benzamidoxime prodrug-converting system as a novel molybdenum enzyme. J Biol Chem 281:34796–34802

    Article  CAS  PubMed  Google Scholar 

  • Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816

    Article  CAS  PubMed  Google Scholar 

  • Hille R (2005) Molybdenum-containing hydroxylases. Arch Biochem Biophys 433:107–116. https://doi.org/10.1016/j.abb.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  • Hille R, Dingwall S, Wilcoxen J (2015) The aerobic CO dehydrogenase from Oligotropha carboxidovorans. J Biol Inorg Chem 20:243–251

    Article  CAS  PubMed  Google Scholar 

  • Hille R, Hall J, Basu P (2014) The mononuclear molybdenum enzymes. Chem Rev 114:3963–4038. https://doi.org/10.1021/cr400443z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille R, Young T, Niks D, Hakopian S, Tam TK, Yu X et al (2020) Structure: function studies of the cytosolic, Mo-and NAD+-dependent formate dehydrogenase from Cupriavidus necator. Inorganics 8:41

    Article  CAS  Google Scholar 

  • Hofmann M (2009) Density functional theory study of model complexes for the revised nitrate reductase active site in Desulfovibrio desulfuricans NapA. J Biol Inorg Chem 14:1023–1035. https://doi.org/10.1007/s00775-009-0545-1

    Article  CAS  PubMed  Google Scholar 

  • Hofmann M, Kassube JK, Graf T (2005) The mechanism of Mo-/cu-dependent CO dehydrogenase. J Biol Inorg Chem 10:490–495

    Article  CAS  PubMed  Google Scholar 

  • Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216. https://doi.org/10.1038/nature05626

    Article  CAS  PubMed  Google Scholar 

  • Howes BD, Bray RC, Richards RL, Turner NA, Bennett B, Lowe DJ (1996) Evidence favoring molybdenum− carbon bond formation in xanthine oxidase action: 17O-and 13C-ENDOR and kinetic studies. Biochemistry 35:1432–1443

    Article  CAS  PubMed  Google Scholar 

  • Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W et al (2017) Microbial respiration and Formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe 21:208–219. https://doi.org/10.1016/j.chom.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh TN, Noriega CE, Stewart V (2010) Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX. Proc Natl Acad Sci 107:21140–21145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iobbi-Nivol C, Leimkühler S (2013) Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. Biochim Biophys Acta 1827:1086–1101. https://doi.org/10.1016/j.bbabio.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  • Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F (2004) Coordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson WA, Böhlke JK, Andraski BJ, Fahlquist L, Bexfield L, Eckardt FD et al (2015) Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochim Cosmochim Acta 164:502–522

    Article  CAS  Google Scholar 

  • Jacobitz S, Meyer O (1989) Removal of CO dehydrogenase from pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities. J Bacteriol 171:6294–6299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JL, Hainline BE, Rajagopalan KV (1980) Characterization of the molybdenum cofactor of sulfite oxidase, xanthine, oxidase, and nitrate reductase. Identification of a pteridine as a structural component. J Biol Chem 255:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Johnson KE, Rajagopalan KV (2001) An active site tyrosine influences the ability of the dimethyl sulfoxide reductase family of molybdopterin enzymes to reduce S-oxides. J Biol Chem 276:13178–13185

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Winters K, Tollin G, Enemark JH (2010) Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses. Biochemistry 49:7242–7254. https://doi.org/10.1021/bi1008485

    Article  CAS  PubMed  Google Scholar 

  • Jormakka M, Richardson D, Byrne B, Iwata S (2004) Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure 12:95–104

    Article  CAS  PubMed  Google Scholar 

  • Jormakka M, Yokoyama K, Yano T, Tamakoshi M, Akimoto S, Shimamura T et al (2008) Molecular mechanism of energy conservation in polysulfide respiration. Nat Struct Mol Biol 15:730–737. https://doi.org/10.1038/nsmb.1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juillan-Binard C, Picciocchi A, Andrieu J-P, Dupuy J, Petit-Hartlein I, Caux-Thang C et al (2017) A two-component NADPH oxidase (NOX)-like system in bacteria is involved in the electron transfer chain to the methionine sulfoxide reductase MsrP. J Biol Chem 292:2485–2494. https://doi.org/10.1074/jbc.M116.752014

    Article  CAS  PubMed  Google Scholar 

  • Kail BW, Perez LM, Zaric SD, Millar AJ, Young CG, Hall MB et al (2006) Mechanistic investigation of the oxygen-atom-transfer reactivity of dioxo-molybdenum(VI) complexes. Chem Eur J 12:7501–7509

    Article  CAS  PubMed  Google Scholar 

  • Kappler U (2011) Bacterial sulfite-oxidizing enzymes. Biochim Biophys Acta 1807:1–10. https://doi.org/10.1016/j.bbabio.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann P, Duffus BR, Mitrova B, Iobbi-Nivol C, Teutloff C, Nimtz M et al (2018) Modulating the molybdenum coordination sphere of Escherichia coli trimethylamine N-oxide reductase. Biochemistry 57:1130–1143. https://doi.org/10.1021/acs.biochem.7b01108

    Article  CAS  PubMed  Google Scholar 

  • King GM, Weber CF (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nature Rev Microbiol 5:107–118

    Article  CAS  Google Scholar 

  • Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan K et al (1997a) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983

    Article  CAS  PubMed  Google Scholar 

  • Kisker C, Schindelin H, Rees D (1997b) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267. https://doi.org/10.1146/annurev.biochem.66.1.233

    Article  CAS  PubMed  Google Scholar 

  • Kozmin SG, Leroy P, Pavlov YI, Schaaper RM (2008) YcbX and yiiM, two novel determinants for resistance of Escherichia coli to N-hydroxylated base analogues. Mol Microbiol 68:51–65. https://doi.org/10.1111/j.1365-2958.2008.06128.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653

    Article  CAS  PubMed  Google Scholar 

  • Kulp T, Hoeft S, Asao M, Madigan M, Hollibaugh J, Fisher J et al (2008) Arsenic (III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321:967–970

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Sickerman NS, Hu Y, Ribbe MW (2016) YedY: A mononuclear molybdenum enzyme with a redox-active ligand? Chembiochem 17:453–455. https://doi.org/10.1002/cbic.201600004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leimkühler S (2020) The biosynthesis of the molybdenum cofactors in Escherichia coli. Environ Microbiol 22:2007–2026. https://doi.org/10.1111/1462-2920.15003

    Article  CAS  PubMed  Google Scholar 

  • Leimkühler S, Iobbi-Nivol C (2015) Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiol Rev 40:1–18. https://doi.org/10.1093/femsre/fuv043

    Article  CAS  PubMed  Google Scholar 

  • Levillain F, Poquet Y, Mallet L, Mazères S, Marceau M, Brosch R et al (2017) Horizontal acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation. PLoS Pathog 13:e1006752. https://doi.org/10.1371/journal.ppat.1006752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H-K, Temple C, Rajagopalan K, Schindelin H (2000) The 1.3 Å crystal structure of Rhodobacter sphaeroides dimethyl sulfoxide reductase reveals two distinct molybdenum coordination environments. J Am Chem Soc 122:7673–7680

    Article  CAS  Google Scholar 

  • Liu MT, Wuebbens MM, Rajagopalan K, Schindelin H (2000) Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli. J Biol Chem 275:1814–1822

    Article  CAS  PubMed  Google Scholar 

  • Lorigan GA, Britt RD, Kim JH, Hille R (1994) Electron spin echo envelope modulation spectroscopy of the molybdenum center of xanthine oxidase. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1185:284–294

    Article  CAS  Google Scholar 

  • Lundgren A (2021) Carl Wilhelm Scheele. Encyclopedia Britannica. https://www.britannica.com/biography/Carl-Wilhelm-Scheele. Accessed 10 July 2021

  • Makdessi K, Andreesen JR, Pich A (2001) Tungstate uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J Biol Chem 276:24557–24564. https://doi.org/10.1074/jbc.M101293200

    Article  CAS  PubMed  Google Scholar 

  • Manikandan P, Choi E-Y, Hille R, Hoffman BM (2001) 35 GHz ENDOR characterization of the “very rapid” signal of xanthine oxidase reacted with 2-Hydroxy-6-methylpurine (13C8): evidence against direct Mo− C8 interaction. J Am Chem Soc 123:2658–2663

    Article  CAS  PubMed  Google Scholar 

  • McAlpine A, McEwan A, Bailey S (1998) The high resolution crystal structure of DMSO reductase in complex with DMSO. J Mol Biol 275:613–623

    Article  CAS  PubMed  Google Scholar 

  • Mendel RR, Leimkuhler S (2015) The biosynthesis of the molybdenum cofactors. J Biol Inorg Chem 20:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meyer O, Jacobitz S, Krüger B (1986) Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol Rev 2:161–179

    Article  Google Scholar 

  • Mintmier B, McGarry JM, Bain DJ, Basu P (2021) Kinetic consequences of the endogenous ligand to molybdenum in the DMSO reductase family: a case study with periplasmic nitrate reductase. JBIC. J Biol Inorg Chem 26:13–28. https://doi.org/10.1007/s00775-020-01833-9

    Article  CAS  PubMed  Google Scholar 

  • Mintmier B, McGarry JM, Sparacino-Watkins CE, Sallmen J, Fischer-Schrader K, Magalon A et al (2018) Molecular cloning, expression and biochemical characterization of periplasmic nitrate reductase from Campylobacter jejuni. FEMS Microbiol Lett 365:fny151. https://doi.org/10.1093/femsle/fny151

    Article  CAS  PubMed Central  Google Scholar 

  • Mintmier B, Nassif S, Stolz JF, Basu P (2020) Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. JBIC. J Biol Inorg Chem 25:547–569

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    Article  PubMed  PubMed Central  Google Scholar 

  • Najmudin S, Gonzalez PJ, Trincao J, Coelho C, Mukhopadhyay A, Cerqueira NMFSA et al (2008) Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. J Biol Inorg Chem 13:737–753. https://doi.org/10.1007/s00775-008-0359-6

    Article  CAS  PubMed  Google Scholar 

  • Neumann M, Mittelstädt G, Iobbi-Nivol C, Saggu M, Lendzian F, Hildebrandt P et al (2009) A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli. FEBS J 276:2762–2774

    Article  CAS  PubMed  Google Scholar 

  • Oden KL, Gladysheva TB, Rosen BP (1994) Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol Microbiol 12:301–306

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Saltikov CW, Wolfe-Simon F, Stolz JF (2009) Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol J 26:522–536

    Article  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  CAS  PubMed  Google Scholar 

  • Pelzmann A, Ferner M, Gnida M, Meyer-Klaucke W, Maisel T, Meyer O (2009) The CoxD protein of Oligotropha carboxidovorans is a predicted AAA+ ATPase chaperone involved in the biogenesis of the CO dehydrogenase [CuSMoO2] cluster. J Biol Chem 284:9578–9586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng T, Xu Y, Zhang Y, Peng T, Xu Y (2018) Comparative genomics of molybdenum utilization in prokaryotes and eukaryotes. BMC Genomics 19:691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinske C, Bönn M, Krüger S, Lindenstrauß U, Sawers RG (2011) Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21 (DE3). PLoS One 6:e22830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier J, Méjean V, Giordano G, Iobbi-Nivol C (1998) TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli. J Biol Chem 273:16615–16620

    Article  CAS  PubMed  Google Scholar 

  • Pushie MJ, George GN (2011) Spectroscopic studies of molybdenum and tungsten enzymes. Coord Chem Rev 255:1055–1084

    Article  CAS  Google Scholar 

  • Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R et al (2002) Gene sequence and the 1.8 Å crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure 10:1261–1272

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers HC, Romao MJ (2006) Formate-reduced E. coli formate dehydrogenase H: the reinterpretation of the crystal structure suggests a new reaction mechanism. JBIC. J Biol Inorg Chem 11:849–854

    Article  CAS  PubMed  Google Scholar 

  • Radon C, Mittelstädt G, Duffus BR, Bürger J, Hartmann T, Mielke T et al (2020) Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-15614-0

    Article  CAS  Google Scholar 

  • Rajagopalan KV, Johnson JL (1992) The pterin molybdenum cofactors. J Biol Chem 267:10199–10202

    Article  CAS  PubMed  Google Scholar 

  • Rech S, Wolin C, Gunsalus RP (1996) Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli. J Biol Chem 271:2557–2562. https://doi.org/10.1074/jbc.271.5.2557

    Article  CAS  PubMed  Google Scholar 

  • Rice AJ, Harrison A, Alvarez FJ, Davidson AL, Pinkett HW (2014) Small substrate transport and mechanism of a molybdate ATP binding cassette transporter in a lipid environment. J Biol Chem 289:15005–15013. https://doi.org/10.1074/jbc.M114.563783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF (2009) Respiratory arsenate reductase as a bidirectional enzyme. Biochem Biophys Res Commun 382:298–302

    Article  CAS  PubMed  Google Scholar 

  • Romao MJ, Archer M, Moura I, Moura JJ, LeGall J, Engh R et al (1995) Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas. Science 270:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Rothery RA, Stein B, Solomonson M, Kirk ML, Weiner JH (2012) Pyranopterin conformation defines the function of molybdenum and tungsten enzymes. Proc Natl Acad Sci 109:14773–14778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothery RA, Workun GJ, Weiner JH (2008) The prokaryotic complex iron–sulfur molybdoenzyme family. Biochim Biophys Acta 1778:1897–1929. https://doi.org/10.1016/j.bbamem.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Pulido L, Rojas AM, Valencia A, Martinez-A C, Andrade MA (2004) ACRATA: a novel electron transfer domain associated to apoptosis and cancer. BMC Cancer 4:1–6

    Article  Google Scholar 

  • Santos-Silva T, Ferroni F, Thapper A, Marangon J, Gonzalez PJ, Rizzi AC et al (2009) Kinetic, structural, and EPR studies reveal that aldehyde oxidoreductase from Desulfovibrio gigas does not need a Sulfido ligand for catalysis and give evidence for a direct Mo-C interaction in a biological system. J Am Chem Soc 131:7990–7998

    Article  CAS  PubMed  Google Scholar 

  • Schindelin H, Kisker C, Hilton J, Rajagopalan K, Rees DC (1996) Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272:1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Schneider F, Löwe J, Huber R, Schindelin H, Kiser C, Knäblein J (1996) Crystal structure of dimethyl sulfoxide reductase Rhodobacter capsulatus at 1.88 Å resolution. J Mol Biol 263:53–69

    Article  CAS  PubMed  Google Scholar 

  • Schoepp-Cothenet B, van Lis R, Atteia A, Baymann F, Capowiez L, Ducluzeau A-L et al (2013) On the universal core of bioenergetics. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1827:79–93

    Article  CAS  Google Scholar 

  • Schoepp-Cothenet B, van Lis R, Philippot P, Magalon A, Russell MJ, Nitschke W (2012) The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life. Sci Rep 2:263. https://doi.org/10.1038/srep00263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader N, Fischer K, Theis K, Mendel RR, Schwarz G, Kisker C (2003) The crystal structure of plant sulfite oxidase provides insights into sulfite oxidation in plants and animals. Structure 11:1251–1263

    Article  CAS  PubMed  Google Scholar 

  • Schroeder HA, Balassa JJ, Tipton IH (1970) Essential trace metals in man: molybdenum. J Chronic Dis 23:481–499. https://doi.org/10.1016/0021-9681(70)90056-1

    Article  CAS  PubMed  Google Scholar 

  • Schultz BE, Hille R, Holm RH (2002) Direct oxygen atom transfer in the mechanism of action of Rhodobacter sphaeroides dimethyl sulfoxide reductase. J Am Chem Soc 117:827–828. https://doi.org/10.1021/ja00107a031

    Article  Google Scholar 

  • Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847

    Article  CAS  PubMed  Google Scholar 

  • Sforna MC, Philippot P, Somogyi A, Van Zuilen MA, Medjoubi K, Schoepp-Cothenet B et al (2014) Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat Geosci 7:811–815

    Article  CAS  Google Scholar 

  • Shanmugam M, Wilcoxen J, Habel-Rodriguez D, Cutsail GE III, Kirk ML, Hoffman BM et al (2013) 13C and 63, 65Cu ENDOR studies of CO dehydrogenase from Oligotropha carboxidovorans. Experimental evidence in support of a copper–carbonyl intermediate. J Am Chem Soc 135:17775–17782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegbahn PE, Shestakov AF (2005) Quantum chemical modeling of CO oxidation by the active site of molybdenum CO dehydrogenase. J Comput Chem 26:888–898

    Article  CAS  PubMed  Google Scholar 

  • Sigel A, Sigel H (2002) Metals Ions in biological system: Volume 39: Molybdenum and Tungsten: their roles in biological processes. CRC Press, New York

    Book  Google Scholar 

  • Smedley PL, Kinniburgh DG (2017) Molybdenum in natural waters: A review of occurrence, distributions and controls. Appl Geochem 84:387–432. https://doi.org/10.1016/j.apgeochem.2017.05.008

    Article  CAS  Google Scholar 

  • Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IA, Allen JF et al (2013) Early bioenergetic evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20130088

    Article  CAS  Google Scholar 

  • Sparacino-Watkins C, Stolz JF, Basu P (2014a) Nitrate and periplasmic nitrate reductases. Chem Soc Rev 43:676–706. https://doi.org/10.1039/c3cs60249d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparacino-Watkins CE, Tejero J, Sun B, Gauthier MC, Thomas J, Ragireddy V et al (2014b) Nitrite reductase and nitric-oxide synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2. J Biol Chem 289:10345–10358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiefel EI (1993) Molybdenum enzymes, cofactors, and chemistry: an introductory survey. American Chemical Society, Washington, DC

    Book  Google Scholar 

  • Stolz JF, Basu P (2002) Evolution of nitrate reductase: molecular and structural variations on a common function. Chembiochem 3:198–206

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5:201–207. http://link.springer.com/article/10.1007%2Fs10123-002-0091-y

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  CAS  PubMed  Google Scholar 

  • Szaleniec M, Dudzik A, Kozik B, Borowski T, Heider J, Witko M (2014) Mechanistic basis for the enantioselectivity of the anaerobic hydroxylation of alkylaromatic compounds by ethylbenzene dehydrogenase. J Inorg Biochem 139:9–20. https://doi.org/10.1016/j.jinorgbio.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  • Tanner SJ, Bray RC, Bergmann F (1978) 13C hyperfine splitting of some molybdenum electron-paramagnetic-resonance signals from xanthine oxidase. Portland Press Ltd

    Book  Google Scholar 

  • Thome R, Gust A, Toci R, Mendel R, Bittner F, Magalon A et al (2012) A Sulfurtransferase is essential for activity of Formate dehydrogenases in Escherichia coli. J Biol Chem 287:4671–4678. https://doi.org/10.1074/jbc.M111.327122

    Article  CAS  PubMed  Google Scholar 

  • Tirado-Lee L, Lee A, Rees DC, Pinkett HW (2011) Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA. Structure 19:1701–1710. https://doi.org/10.1016/j.str.2011.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truglio JJ, Theis K, Leimkühler S, Rappa R, Rajagopalan KV, Kisker C (2002) Crystal structures of the active and Alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure 10:115–125. https://doi.org/10.1016/S0969-2126(01)00697-9

    Article  CAS  PubMed  Google Scholar 

  • Unciuleac M, Warkentin E, Page CC, Boll M, Ermler U (2004) Structure of a xanthine oxidase-related 4-hydroxybenzoyl-CoA reductase with an additional [4Fe-4S] cluster and an inverted electron flow. Structure 12:2249–2256

    Article  CAS  PubMed  Google Scholar 

  • Wagener N, Pierik AJ, Ibdah A, Hille R, Dobbek H (2009) The Mo-Se active site of nicotinate dehydrogenase. Proc Natl Acad Sci 106:11055–11060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warelow TP, Oke M, Schoepp-Cothenet B, Dahl JU, Bruselat N, Sivalingam GN et al (2013) The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster. PLoS One 8:e72535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells M, Basu P, Stolz JF (2021) The physiology and evolution of microbial selenium metabolism. Metallomics 13:mfab024

    Article  PubMed  Google Scholar 

  • Wells M, Kanmanii NJ, Janecka JE, Basu P, Oremland RS, Stolz JF (2020) Methane, arsenic, selenium and the origins of the DMSO reductase family. Sci Rep 10:1–14

    Article  CAS  Google Scholar 

  • Wells M, McGarry J, Gaye MM, Basu P, Oremland RS, Stolz JF (2019) Respiratory selenite reductase from bacillus selenitireducens strain MLS10. J Bacteriol 201:e00614–e00618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youngblut MD, Tsai C-L, Clark IC, Carlson HK, Maglaqui AP, Gau-Pan PS et al (2016) Perchlorate reductase is distinguished by active site aromatic gate residues*. J Biol Chem 291:9190–9202. https://doi.org/10.1074/jbc.M116.714618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V, Hoeft S et al (2012) ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ Microbiol 14:1635–1645

    Article  CAS  PubMed  Google Scholar 

  • Zargar K, Hoeft S, Oremland R, Saltikov CW (2010) Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 192:3755–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Krause KH, Xenarios I, Soldati T, Boeckmann B (2013) Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs. PLoS One 8:e58126. https://doi.org/10.1371/journal.pone.0058126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gladyshev VN (2008) Molybdoproteomes and evolution of molybdenum utilization. J Mol Biol 379:881–899. https://doi.org/10.1016/j.jmb.2008.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zheng J (2020) Bioinformatics of metalloproteins and metalloproteomes. Molecules 25:3366

    Article  CAS  PubMed Central  Google Scholar 

  • Zhong Q, Kobe B, Kappler U (2020) Molybdenum enzymes and how they support virulence in pathogenic bacteria (review). Front Microbiol 11:615860. https://doi.org/10.3389/fmicb.2020.615860

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our past and present coworkers and collaborators who have inspired us with stimulating discussions. We are grateful for financial support from the National Institutes of Health and National Science Foundation for support of our work on microbial molybdenum enzymes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Metzger, M.C., Basu, P. (2022). Pterin-Containing Microbial Molybdenum Enzymes. In: Hurst, C.J. (eds) Microbial Metabolism of Metals and Metalloids. Advances in Environmental Microbiology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-97185-4_13

Download citation

Publish with us

Policies and ethics