Skip to main content

Understanding Abiotic Stress Tolerance in Plants by Proteomic Approach

  • Chapter
  • First Online:
Principles and Practices of OMICS and Genome Editing for Crop Improvement

Abstract

Environmental stresses pose a threatening pressure to the survival of plants and have been associated with the influence on the physiology, morphology, biochemistry, and molecular biology of plants. These abiotic threats are in the form of temperatures, drought, salinity, heavy metals, and nutritional deficiency. Although the majority of the world’s agricultural resources are wasted due to these abiotic stresses, plants have been developing various strategies to withstand the adverse effects of stresses. Stress tolerance in plants is a multigene phenomenon. The exploitation of potential genes that can safeguard and maintain the functions of cells to develop plants with abiotic stress tolerance is the ultimate point of future research in agronomy and agricultural science. Many molecular approaches have been considered to uncover the mechanism with which plants sense stress signals and respond to them. Establishing stress tolerance in plants is the current main focus of agricultural researches. The biological advancement has made it possible to fully understand abiotic stress tolerance in plants using throughput sequencing and functional genomics. With all the disciplines of OMICS, genomics and proteomics have been extensively investigated to understand the abiotic stress tolerance in plants. This chapter has been mainly centered around the abiotic stresses and understanding plants responses by using proteomes in diverse ways under specific stress. The abiotic stresses, plant responses, and proteomics approaches to understand the overall role of proteins in abiotic stress tolerance in plants are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Wabel MI, Ahmad M, Adel RA, Usman MA, Rafique MI (2020a) Advances in pyrolytic technologies with improved carbon capture and storage to combat climate change. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Khan AK, Adnan M (eds) Environment, climate, plant and vegetation growth. Springer, Cham, pp 535–576. https://doi.org/10.1007/978-3-030-49732-3

    Chapter  Google Scholar 

  • Al-Wabel MI, Abdelazeem S, Munir A, Khalid E, Adel RAU (2020b) Extent of climate change in Saudi Arabia and its impacts on agriculture: a case study from qassim region. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Khan AK, Adnan M (eds) Environment, climate, plant and vegetation growth. Springer, Cham, pp 635–658. https://doi.org/10.1007/978-3-030-49732-3

    Chapter  Google Scholar 

  • Amasino R (2004) Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16(10):2553–2559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Annunziato A (2008) DNA packaging: nucleosomes and chromatin. Nat Educ 1(1):26

    Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183

    CAS  PubMed  Google Scholar 

  • Atif B, Hesham A, Fahad S (2021) Biochar coupling with phosphorus fertilization modifies antioxidant activity, osmolyte accumulation and reactive oxygen species synthesis in the leaves and xylem sap of rice cultivars under high-temperature stress. Physiol Mol Biol Plants 27(9):2083–2100. https://doi.org/10.1007/s12298-021-01062-7

    Article  CAS  Google Scholar 

  • Barnabás B, Jäger K, FehĂ©r A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38

    PubMed  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

    CAS  PubMed  Google Scholar 

  • Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29(4):449–459

    PubMed  Google Scholar 

  • Bray EA (2000) Response to abiotic stress. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Breton G, Danyluk J, Charron JBF, Sarhan F (2003) Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol 132(1):64–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capdevila M, Atrian S (2011) Metallothionein protein evolution: a miniassay. JBIC J Biol Inorg Chem 16(7):977–989

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    CAS  PubMed  Google Scholar 

  • Ciarmiello LF, Woodrow P, Fuggi A (2011) Plant genes for abiotic stress, abiotic stress in plants–mechanisms and adaptations, Prof. Arun Shanker (ed), ISBN: 978-953-307-394-1, InTech

    Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5(12):3162–3172

    CAS  PubMed  Google Scholar 

  • Diks SH, Peppelenbosch MP (2004) Single cell proteomics for personalised medicine. Trends Mol Med 10(12):574–577

    CAS  PubMed  Google Scholar 

  • Fahad S, Chen Y, Saud S, Wang K, Xiong D, Chen C, Wu C, Shah F, Nie L, Huang J (2013) Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. J Food Agri Environ 11(3&4):1635–1641

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2014a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921. https://doi.org/10.1007/s11356-014-3754-2

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11(7):e0159590. https://doi.org/10.1371/journal.pone.0159590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Amanullah J, Nasim W, Arif M, Wang F, Huang J (2016b) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

    CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016c) Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. https://doi.org/10.3389/fpls.2016.01250

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, Alharby HNW, Wu C, Huang J (2016d) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    CAS  PubMed  Google Scholar 

  • Fahad S, Rehman A, Shahzad B, Tanveer M, Saud S, Kamran M, Ihtisham M, Khan SU, Turan V, Rahman MHU (2019a) Rice responses and tolerance to metal/metalloid toxicity. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publ Ltd, Cambridge, pp 299–312

    Google Scholar 

  • Fahad S, Adnan M, Hassan S, Saud S, Hussain S, Wu C, Wang D, Hakeem KR, Alharby HF, Turan V, Khan MA, Huang J (2019b) Rice responses and tolerance to high temperature. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing Ltd, Cambridge, pp 201–224

    Google Scholar 

  • Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Ali Khan I, Adnan M (eds) (2020) Environment, climate, plant and vegetation growth. Springer Nature, Cham. https://doi.org/10.1007/978-3-030-49732-3

    Book  Google Scholar 

  • Fahad S, Sönmez O, Saud S, Wang D, Wu C, Adnan M, Turan V (eds) (2021a) Plant growth regulators for climate-smart agriculture, Footprints of climate variability on plant diversity, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Fahad S, Sonmez O, Saud S, Wang D, Wu C, Adnan M, Turan V (eds) (2021b) Climate change and plants: biodiversity, growth and interactions, Footprints of climate variability on plant diversity, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Fahad S, Sonmez O, Saud S, Wang D, Wu C, Adnan M, Turan V (eds) (2021c) Developing climate resilient crops: improving global food security and safety, Footprints of climate variability on plant diversity, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Fahad S, Sönmez O, Turan V, Adnan M, Saud S, Wu C, Wang D (eds) (2021d) Sustainable soil and land management and climate change, Footprints of climate variability on plant diversity, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Fahad S, Sönmez O, Saud S, Wang D, Wu C, Adnan M, Arif M, Amanullah. (eds) (2021e) Engineering tolerance in crop plants against abiotic stress, Footprints of climate variability on plant diversity, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • FAO F, Foods M (2008) Food and agriculture organization of the united nations. FAO, Rome

    Google Scholar 

  • Farhat A, Hafiz MH, Wajid I, Aitazaz AF, Hafiz FB, Zahida Z, Fahad S, Wajid F, Artemi C (2020) A review of soil carbon dynamics resulting from agricultural practices. J Environ Manag 268(2020):110319

    Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJ, Fischhoff DA, Hodges CN et al (2010) Radically rethinking agriculture for the 21st century. Science 327(5967):833–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomathi R, Vasantha S (2006) Change in nucleic acid content and expression of salt shock proteins in relation to salt tolerance in sugarcane. Sugar Tech 8(2):124–127

    CAS  Google Scholar 

  • Gull A, Lone AA, Wani NUI (2019) Biotic and abiotic stresses in plants. In: De Oliveira A (ed) Abiotic and biotic stress in plants. Intech Open, London, pp 1–19

    Google Scholar 

  • Guy C (1999) Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol 1(2):231–242

    CAS  PubMed  Google Scholar 

  • Hasan M, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY (2017) Responses of plant proteins to heavy metal stress—a review. Front Plant Sci 8:1492

    PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Toorchi M, Matsushita K, Iwasaki Y, Komatsu S (2009) Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins. Protein Pept Lett 16(6):685–697

    CAS  PubMed  Google Scholar 

  • Hesham FA, Fahad S (2020) Melatonin application enhances biochar efficiency for drought tolerance in maize varieties: modifications in physio-biochemical machinery. Agron J 112(4):1–22

    Google Scholar 

  • Hlaváčková I, VĂ­támvás P, Ĺ antrĹŻÄŤek J, Kosová K, Zelenková S, Prášil IT et al (2013) Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor. Int J Mol Sci 14(4):8000–8024

    PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Makino T, Komatsu S (2012) Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean. J Proteome 75(13):4151–4164

    CAS  Google Scholar 

  • Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: changes at the protein level. Phytochemistry 117:76–89

    CAS  PubMed  Google Scholar 

  • Janská A, Aprile A, ZámeÄŤnĂ­k J, Cattivelli L, Ovesná J (2011) Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct Integr Genomics 11(2):307–325

    PubMed  PubMed Central  Google Scholar 

  • Joseph B, Jini D (2010) Proteomic analysis of salinity stress-responsive proteins in plants. Asian J Plant Sci 9(6):307

    CAS  Google Scholar 

  • Kamarn M, Wenwen C, Irshad A, Xiangping M, Xudong Z, Wennan S, Junzhi C, Shakeel A, Fahad S, Qingfang H, Tiening L (2017) Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regul 84:317–332. https://doi.org/10.1007/s10725-017-0342-8

    Article  CAS  Google Scholar 

  • Khan Z, Shahwar D (2020) Role of Heat Shock Proteins (HSPs) and heat stress tolerance in crop plants. In: Sustainable agriculture in the era of climate change. Springer, Cham, pp 211–234

    Google Scholar 

  • Kosová K, VĂ­támvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteome 74(8):1301–1322

    Google Scholar 

  • Kregel KC (2002) Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92(5):2177–2186

    CAS  PubMed  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Kang KY, Lee JJ, Lee BH (2007) An approach to identify cold-induced low-abundant proteins in rice leaf. Comptes rendus biologies 330(3):215–225

    CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22(1):631–677

    Google Scholar 

  • Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z (2015) Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. J Hazard Mater 294:99–108

    CAS  PubMed  Google Scholar 

  • Lotze-Campen H, Schellnhuber HJ (2009) Climate impacts and adaptation options in agriculture: what we know and what we don’t know. J Verbr Lebensm 4(2):145–150

    Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (2020) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water, vol 13, p 235

    Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48(5):667–681

    CAS  PubMed  Google Scholar 

  • Mahmood Ul H, Tassaduq R, Chandni I, Adnan A, Muhammad A, Muhammad MA, Muhammad H-u-R, Mehmood AN, Alam S, Fahad S (2021) Linking plants functioning to adaptive responses under heat stress conditions: a mechanistic review. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10493-1

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Abiotic stress responses in plants. Springer, New York, NY, pp 1–19

    Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H et al (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38(6):982–993

    CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends in biochemical sciences, 37(3):118–125

    Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14(3):5312–5337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad Z, Abdul MK, Abdul MS, Kenneth BM, Muhammad S, Shahen S, Ibadullah J, Fahad S (2019) Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions. Environ Sci Pollut Res 26(13):13410–13421. https://doi.org/10.1007/s11356-019-04838-3

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Neilson KA, Mariani M, Haynes PA (2011) Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics 11(9):1696–1706

    PubMed  Google Scholar 

  • Neumann D, Lichtenberger O, GĂĽnther D, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta 194(3):360–367

    CAS  Google Scholar 

  • Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Hosseini Salekdeh G (2007) Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem 71(9):2144–2154

    PubMed  Google Scholar 

  • Ortiz R, Braun HJ, Crossa J, Crouch JH, Davenport G, Dixon J et al (2008) Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genet Resour Crop Evol 55(7):1095–1140

    Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86(4):709–716

    CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    CAS  PubMed  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14(3):232–239

    CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23(3):319–327

    CAS  PubMed  Google Scholar 

  • Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants–genes and environmental stresses with special reference to high temperature injury. Int J Plant Dev Biol 2(4)

    Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290(3):998–1009

    CAS  PubMed  Google Scholar 

  • Saleem MH, Fahad S, Adnan M, Mohsin A, Muhammad SR, Muhammad K, Qurban A, Inas AH, Parashuram B, Mubassir A, Reem MH (2020a) Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Environ Sci Pollut Res 27(29):37121–37133. https://doi.org/10.1007/s11356-020-09764-3

    Article  CAS  Google Scholar 

  • Saleem MH, Rehman M, Fahad S, Tung SA, Iqbal N, Hassan A, Ayub A, Wahid MA, Shaukat S, Liu L, Deng G (2020b) Leaf gas exchange, oxidative stress, and physiological attributes of rapeseed (Brassica napus L.) grown under different light-emitting diodes. Photosynthetica 58(3):836–845

    CAS  Google Scholar 

  • Saleem MH, Fahad S, Shahid UK, Mairaj D, Abid U, Ayman ELS, Akbar H, AnalĂ­a L, Lijun L (2020c) Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ Sci Pollut Res 27(5):5211–5221. https://doi.org/10.1007/s11356-019-07264-7

    Article  CAS  Google Scholar 

  • Saleh J, Maftoun M (2008) Interactive effect of NaCl levels and Zinc sources and levels on the growth and mineral composition of rice. J Agric Sci Technol 10:325–336

    Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. PROTEOMICS: Int Ed 2(9):1131–1145

    CAS  Google Scholar 

  • Schirle M, Heurtier MA, Kuster B (2003) Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 2(12):1297–1305

    CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13(1):61–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah F, Lixiao N, Kehui C, Tariq S, Wei W, Chang C, Liyang Z, Farhan A, Fahad S, Huang J (2013) Rice grain yield and component responses to near 2°C of warming. Field Crop Res 157:98–110

    Google Scholar 

  • Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123

    PubMed  PubMed Central  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115(3):1211–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7(2):161–167

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217–223

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    Google Scholar 

  • Shinwari ZK, Jan SA, Nakashima K, Yamaguchi-Shinozaki K (2020) Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol Rep 14(2):151–162

    Google Scholar 

  • Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, Close TJ, Cattivelli L (2006) Transcriptome analysis of cold acclimation in barley Albina and Xantha mutants. Plant Physiol 141(1):257–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomol Ther 4(1):252–267

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50(1):571–599

    CAS  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9(2):189–195

    CAS  PubMed  Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16(7):363–371

    CAS  PubMed  Google Scholar 

  • Vollenweider P, GĂĽnthardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137(3):455–465

    CAS  PubMed  Google Scholar 

  • von Zitzewitz J, Szűcs P, Dubcovsky J, Yan L, Francia E, Pecchioni N et al (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59(3):449–467

    CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Google Scholar 

  • Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y (2008) Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta 228(1):167–177

    CAS  PubMed  Google Scholar 

  • Wang CT, Ru JN, Liu YW, Yang JF, Li M, Xu ZS, Fu JD (2018) The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci 19(9):2580

    PubMed  PubMed Central  Google Scholar 

  • Weckwerth W, Baginsky S, van Wijk K, Heazlewood JL, Millar H (2008) The multinational Arabidopsis steering subcommittee for proteomics assembles the largest proteome database resource for plant systems biology. J Proteome Res 7(10):4209–4210

    CAS  PubMed  Google Scholar 

  • Weis E, Berry JA (1988, January) Plants and high temperature stress. In: Symposia of the society for experimental biology, vol 42, pp 329–346

    Google Scholar 

  • Wen X, Wang J, Zhang D, Wang Y (2019) A gene regulatory network controlled by BpERF2 and BpMYB102 in Birch under drought conditions. Int J Mol Sci 20(12):3071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5(3):484–496

    CAS  PubMed  Google Scholar 

  • Yancey PH (1994) Cellular and molecular physiology of cell volume regulation. Competable and counteracting solutes. CRC Press (Taylor & Francis Group), Boca Raton, pp 81–110

    Google Scholar 

  • Zabotin AI, Barisheva TS, Trofimova OI, Toroschina TE, Larskaya IA, Zabotina OA (2009) Oligosaccharin and ABA synergistically affect the acquisition of freezing tolerance in winter wheat. Plant Physiol Biochem 47(9):854–858

    CAS  PubMed  Google Scholar 

  • Zargar SM, Nagar P, Deshmukh R, Nazir M, Wani AA, Masoodi KZ et al (2017) Aquaporins as potential drought tolerance inducing proteins: towards instigating stress tolerance. J Proteome 169:233–238

    CAS  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11(1):49–67

    PubMed  Google Scholar 

  • Zhao Y, Chengcai C (2011) Towards understanding plant response to heavy metal stress. In: Shanker A (ed) Abiotic stress in plants – mechanisms and adaptations. Tech Europe, Rijeka, pp 59–78

    Google Scholar 

  • Zhao J, Zhang S, Yang T, Zeng Z, Huang Z, Liu Q et al (2015) Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiol Plant 154(3):381–394

    CAS  PubMed  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zakariya, M. et al. (2022). Understanding Abiotic Stress Tolerance in Plants by Proteomic Approach. In: Prakash, C.S., Fiaz, S., Fahad, S. (eds) Principles and Practices of OMICS and Genome Editing for Crop Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-96925-7_11

Download citation

Publish with us

Policies and ethics