Skip to main content

Parameterized Complexity of Immunization in the Threshold Model

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13174))

Included in the following conference series:

Abstract

We consider the problem of controlling the spread of harmful items in networks, such as the contagion proliferation of diseases or the diffusion of fake news. We assume the linear threshold model of diffusion where each node has a threshold that measures the node’s resistance to the contagion. We study the parameterized complexity of the problem: Given a network, a set of initially contaminated nodes, and two integers k and \(\ell \), is it possible to limit the diffusion to at most k other nodes of the network by immunizing at most \(\ell \) nodes? We consider several parameters associated with the input, including the bounds k and \(\ell \), the maximum node degree \(\varDelta \), the treewidth, and the neighborhood diversity of the network. We first give W[1] or W[2]-hardness results for each of the considered parameters. Then we give fixed-parameter algorithms for some parameter combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a positive integer a, we use [a] to denote the set of integers \([a] = \{1, 2, \ldots , a\}\).

References

  1. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 404, 378–382 (2000)

    Article  Google Scholar 

  2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011). ISSN 1572–5286. https://doi.org/10.1016/j.disopt.2010.09.007

  3. Chen, P., David, M., Kempe, D.: Better vaccination strategies for better people. In: Proceedings 11th ACM Conference on Electronic Commerce (EC-2010), Cambridge, Massachusetts, USA, 7–11 June (2010)

    Google Scholar 

  4. Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: A fast and effective heuristic for discovering small target sets in social networks. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 193–208. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_15

    Chapter  MATH  Google Scholar 

  5. Cordasco, G., Gargano, L., Rescigno, A.A.: Influence propagation over large scale social networks. In: Proceedings of ASONAM 2015, pp. 1531–1538 (2015)

    Google Scholar 

  6. Cordasco, G., Gargano, L., Rescigno, A.A.: On finding small sets that influence large networks. Soc. Netw. Anal. Min. 6(1), 1–20 (2016). https://doi.org/10.1007/s13278-016-0408-z

    Article  Google Scholar 

  7. Cordasco, G., Gargano, L., Rescigno, A.A.: Active influence spreading in social networks. Theoret. Comput. Sci. 764, 15–29 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Evangelism in social networks: algorithms and complexity. Networks 71(4), 346–357 (2018)

    Article  MathSciNet  Google Scholar 

  9. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS, Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  11. Ehard, S., Rautenbach, D.: Vaccinate your trees! Theoret. Comput. Sci. 772, 46–57 (2019). ISSN 0304–3975. https://doi.org/10.1016/j.tcs.2018.11.018

  12. Feige, U., Krauthgamer, R., Nissim, K.: On cutting a few vertices from a graph. Discret. Appl. Math. 127, 643–649 (2003)

    Article  MathSciNet  Google Scholar 

  13. Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. Australas. J. Comb. 43, 57–77 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Feige, U., Kogan, S.: Target Set Selection for Conservative Population CoRR abs/1909.03422 (2019)

    Google Scholar 

  15. Fomin, F.V., Golovach, P.A., Korhonen, J.H.: On the parameterized complexity of cutting a few vertices from a graph. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 421–432. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2_38

    Chapter  MATH  Google Scholar 

  16. Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. Theoret. Comput. Sci. 566, 39–49 (2015)

    Article  MathSciNet  Google Scholar 

  17. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  18. Gavenciak, T., Knop, D., Koutecký, M.: Integer Programming in Parameterized Complexity: Three Miniatures. In Proceedings of IPEC 2018 (2018). https://doi.org/10.4230/LIPIcs.IPEC.2018.21

  19. Granovetter, M.: Threshold models of collective behaviors. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  20. Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z.: Unbalanced graph cuts. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 191–202. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_19

    Chapter  Google Scholar 

  21. Hanaka, T., Bodlaender, H.L., van der Zanden, T.C., Ono, H.: On the maximum weight minimal separator. Theor. Comput. Sci. 796, 294–308 (2019)

    Google Scholar 

  22. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, USA, pp. 137–146 (2003)

    Google Scholar 

  23. Khalil, E.B., Dilkina, B., Song, L.: CuttingEdge: influence minimization in networks. In: Methods, Models, and Applications at NIPS, Workshop on Frontiers of Network Analysis (2013)

    Google Scholar 

  24. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discovery Data 3(2) (2009)

    Google Scholar 

  25. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375ISSN: 0302-9743

    Book  MATH  Google Scholar 

  26. Knop, D., Koutecký, M., Masarík, T., Toufar, T.: Simplified algorithmic metatheorems beyond MSO: treewidth and neighborhood diversity. Logical Methods Comput. Sci. 15(4) (2019)

    Google Scholar 

  27. Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 242–251. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33293-7_23

    Chapter  Google Scholar 

  28. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64, 19–37 (2012)

    Article  MathSciNet  Google Scholar 

  29. Menczer, F., Fortunato, S., Davis, C.A.: A First Course in Network Science, 1st edn. Cambridge University Press (2020)

    Google Scholar 

  30. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Phys. Rev. E 66 (2002)

    Google Scholar 

  31. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

    Google Scholar 

  32. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Cordasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cordasco, G., Gargano, L., Rescigno, A.A. (2022). Parameterized Complexity of Immunization in the Threshold Model. In: Mutzel, P., Rahman, M.S., Slamin (eds) WALCOM: Algorithms and Computation. WALCOM 2022. Lecture Notes in Computer Science(), vol 13174. Springer, Cham. https://doi.org/10.1007/978-3-030-96731-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96731-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96730-7

  • Online ISBN: 978-3-030-96731-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics