Skip to main content

On the Stability and Long-Term Behaviour of Structural Systems Excited by Nonideal Power Sources

  • Chapter
  • First Online:
Nonlinear Vibrations Excited by Limited Power Sources

Abstract

This chapter investigates the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The proposed mathematical model is simple enough to allow for an analytical treatment of the equations, while sufficiently complex to preserve the main nonlinear phenomena that can be observed in real unbalanced rotating machinery. The primary focus is on the bidirectional interaction that in general exists between the excitation provided by the motor and the response of the vibrating structure. By combining various mathematical tools (Averaging, Singular Perturbation Theory, classification of Hopf bifurcations, Poincaré-Bendixson Theorem), the long-term behaviour of the system is investigated in detail. The analytical results are verified numerically. It should be noted that the study presented in this Chapter was originally published in [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. González-Carbajal, J., Domínguez, J.: Limit cycles in nonlinear vibrating systems excited by a nonideal energy source with a large slope characteristic. Nonlinear Dyn. (2017). https://doi.org/10.1007/s11071-016-3120-7

    Article  Google Scholar 

  2. González-Carbajal, J., Domínguez, J.: Nonlinear vibrating systems excited by a nonideal energy source with a large slope Characteristic. Mech. Syst. Signal Process (2017)

    Google Scholar 

  3. Boyaci, A., Lu, D., Schweizer, B.: Stability and bifurcation phenomena of Laval/Jeffcott rotors in semi-floating ring bearings. Nonlinear Dyn. 79, 1535–1561 (2015). https://doi.org/10.1007/s11071-014-1759-5

    Article  Google Scholar 

  4. Yang, J., Gao, Y., Liu, Z., et al.: A method for modeling and analyzing the rotor dynamics of a locomotive turbocharger. Nonlinear Dyn. 84, 287–293 (2016). https://doi.org/10.1007/s11071-015-2497-z

    Article  Google Scholar 

  5. Shabana, A.A.: Theory of Vibration (An Introduction) (1996)

    Google Scholar 

  6. Xu, M., Marangoni, R.D.: Vibration analysis of a motor-flexible coupling-rotor system subject to Misalignment and unbalance, Part I: theoretical model and analysis. J. Sound Vib. 176, 663–679 (1994)

    Google Scholar 

  7. Thomson, W.T.: Theory of Vibration with Applications (1996)

    Google Scholar 

  8. Sommerfeld, A.: Naturwissenchftliche Ergebnisse der Neuren Technischen Mechanik. Verein Dtsch Ing Zeitscchrift 18, 631–636 (1904). https://doi.org/10.1109/COC.2000.873973

    Article  Google Scholar 

  9. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley and Sons (1995)

    Book  Google Scholar 

  10. Kononenko, V.O.: Vibrating Systems with a Limited Power Supply. Illife, London (1969)

    Google Scholar 

  11. Rand, R.H., Kinsey, R.J., Mingori, D.L.: Dynamics of spinup through resonance. Int. J. Non. Linear Mech. 27, 489–502 (1992). https://doi.org/10.1016/0020-7462(92)90015-Y

    Article  MATH  Google Scholar 

  12. Blekhman, I.I.: Vibrational Mechanics-Nonlinear Dynamic Effects, General Approach. Singapore (2000)

    Google Scholar 

  13. El-Badawy, A.A.: Behavioral investigation of a nonlinear nonideal vibrating system. J. Vib. Control 13, 203–217 (2007). https://doi.org/10.1177/1077546307073674

  14. Bolla, M.R., Balthazar, J.M., Felix, J.L.P., Mook, D.T.: On an approximate analytical solution to a nonlinear vibrating problem , excited by a nonideal motor. Nonlinear Dyn., 841–847 (2007). https://doi.org/10.1007/s11071-007-9232-3

  15. Balthazar, J.M., Mook, D.T., Weber, H.I., et al.: An overview on non-Ideal vibrations. Meccanica 38, 613–621 (2003)

    Google Scholar 

  16. Mettler, E.: Handbook of Engineering Mechanics. McGraw-Hill, New York (1962)

    Google Scholar 

  17. Dimentberg, M.F., Mcgovern, L., Norton, R.L. et al.: Dynamics of an unbalanced shaft interacting with a limited power Supply. Nonlinear Dyn., 171–187 (1997). https://doi.org/10.1023/a:1008205012232

  18. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007)

    MATH  Google Scholar 

  19. Fidlin, A.: Nonlinear Oscillations in Mechanical Engineering. Springer-Verlag, Berlin, Heidelberg (2006)

    Google Scholar 

  20. Hunter, J.K.: Asymptotic analysis and singular perturbation theory. Dep. Math. Univ. Calif. Davis (2004)

    Google Scholar 

  21. Lesne, A.: Multi-scale approaches. Lab Phys la Matière Condens Univ Pierre Marie Curie (2006)

    Google Scholar 

  22. Verhulst, F., Bakri, T.: The dynamics of slow manifolds. J. Indones Math. Soc., 1–16 (2006)

    Google Scholar 

  23. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the Duffing oscillator. J .Sound Vib. 318, 1250–1261 (2008). https://doi.org/10.1016/j.jsv.2008.04.032

    Article  Google Scholar 

  24. Thomsen, J.J.: Vibrations and Stability. Heidelberg, New York, Berlin (2003)

    Book  Google Scholar 

  25. Habib, G., Kerschen, G.: Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber. Proc. R Soc. (2015)

    Google Scholar 

  26. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Second Edition, New York (1998)

    MATH  Google Scholar 

  27. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, New York, NY (1983)

    Book  Google Scholar 

  28. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González-Carbajal .

Editor information

Editors and Affiliations

Appendix

Appendix

This section provides the expressions of parameters \({f}_{ij}\) and \({g}_{ij}\) in Eq. (80). These are simply the coefficients of the nonlinear terms of system (79), which result when system (73) is transformed according to change of variables (76),

$${f}_{20}=-\frac{3\rho aR}{4{c}_{2}}\left(3{c}_{1}^{2}+{c}_{2}^{2}\right)-2{c}_{1}\left(\frac{2\xi }{aR}+\frac{3}{4}\rho {a}^{2}\right)$$
(A.1)
$${f}_{02}=-\frac{9\rho aR{\omega }_{0}^{2}}{4{c}_{2}}$$
(A.2)
$${f}_{11}=-\frac{3}{4}\rho {\omega }_{0}a\left(a+3R\frac{{c}_{1}}{{c}_{2}}\right)-\frac{2\xi {\omega }_{0}}{aR}$$
(A.3)
$${f}_{30}=\frac{9\rho {c}_{1}}{4{c}_{2}}\left({c}_{1}^{2}+{c}_{2}^{2}\right)$$
(A.4)
$${f}_{03}=\frac{9\rho {\omega }_{0}^{3}}{4{c}_{2}}$$
(A.5)
$${f}_{21}=\frac{3\rho {\omega }_{0}}{4{c}_{2}}\left(3{c}_{1}^{2}+{c}_{2}^{2}\right)$$
(A.6)
$${f}_{12}=\frac{9{c}_{1}\rho {\omega }_{0}^{2}}{4{c}_{2}}$$
(A.7)
$${g}_{20}=\frac{\left({c}_{1}^{2}+{c}_{2}^{2}\right)}{{\omega }_{0}}\left[\frac{9\rho a}{4}\left(R\frac{{c}_{1}}{{c}_{2}}+a\right)+\frac{4\xi }{aR}\right]$$
(A.8)
$${g}_{02}=\frac{3\rho {\omega }_{0}a}{4}\left(a+3R\frac{{c}_{1}}{{c}_{2}}\right)$$
(A.9)
$${g}_{11}=\frac{3}{2}\rho {a}^{2}{c}_{1}+\frac{3\rho aR}{4{c}_{2}}\left(3{c}_{1}^{2}+{c}_{2}^{2}\right)+\frac{2\xi {c}_{1}}{aR}$$
(A.10)
$${g}_{30}=-\frac{9\rho }{4{\omega }_{0}{c}_{2}}{\left({c}_{1}^{2}+{c}_{2}^{2}\right)}^{2}$$
(A.11)
$${g}_{03}=-\frac{9{c}_{1}\rho {\omega }_{0}^{2}}{4{c}_{2}}$$
(A.12)
$${g}_{21}=-\frac{9{c}_{1}\rho }{4{c}_{2}}\left({c}_{1}^{2}+{c}_{2}^{2}\right)$$
(A.13)
$${g}_{12}=-\frac{3\rho {\omega }_{0}}{4{c}_{2}}\left(3{c}_{1}^{2}+{c}_{2}^{2}\right),$$
(A.14)

where \({a}_{eq}\) and \({R}_{eq}\) have been shortly written as \(a\) and \(R\), respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Carbajal, J., García-Vallejo, D., Domínguez, J. (2022). On the Stability and Long-Term Behaviour of Structural Systems Excited by Nonideal Power Sources. In: Balthazar, J.M. (eds) Nonlinear Vibrations Excited by Limited Power Sources. Mechanisms and Machine Science, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-96603-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96603-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96602-7

  • Online ISBN: 978-3-030-96603-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics