Skip to main content
Log in

Limit cycles in nonlinear vibrating systems excited by a nonideal energy source with a large slope characteristic

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study is the natural continuation of a previous paper of the authors González-Carbajal and Domínguez in J. Sound Vib. (Under revision), where the possibility of finding Hopf bifurcations in vibrating systems excited by a nonideal power source was addressed. Herein, some analytical tools are used to characterize these Hopf bifurcations, deriving a simple rule to classify them as supercritical or subcritical. Moreover, we find conditions under which the averaged system can be proved to be always attracted by a limit cycle, irrespective of the initial conditions. These limit cycle oscillations in the averaged system correspond to quasiperiodic motions of the original system. To the authors’ knowledge, limit cycle oscillations have not been addressed before in the literature about nonideal excitations. Through supporting numerical simulations, we also investigate the global bifurcations destroying the limit cycles. The analytical results are verified numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. González-Carbajal, J., Domínguez, J.: Nonlinear vibrating systems excited by a nonideal energy source with a large slope characteristic. J. Sound Vib. (Under revision)

  2. Abbasi, A., Khadem, S.E., Bab, S., Friswell, M.I.: Vibration control of a rotor supported by journal bearings and an asymmetric high-static low-dynamic stiffness suspension. Nonlinear Dyn. 85(1), 525–545 (2016)

    Article  Google Scholar 

  3. Boyaci, A., Lu, D., Schweizer, B.: Stability and bifurcation phenomena of Laval/Jeffcott rotors in semi-floating ring bearings. Nonlinear Dyn. 79, 1535–1561 (2015)

    Article  Google Scholar 

  4. Shabana, A.A.: Theory of Vibration (an introduction). Springer, New York (1996). doi:10.1007/978-1-4612-3976-5

  5. Balthazar, J.M., Mook, D.T., Weber, H.I., R, B., Fenili, A., Belato, D., Felix, J.L.P.: An Overview on non-ideal vibrations. Meccanica 38, 613–621 (2003)

    Article  MATH  Google Scholar 

  6. Munteanu, L., Chiroiu, V., Sireteanu, T.: On the response of small buildings to vibrations. Nonlinear Dyn. 73, 1527–1543 (2013)

    Article  MathSciNet  Google Scholar 

  7. Dimentberg, M.F., Mcgovern, L., Norton, R.L., Chapdelaine, J., Harrison, R.: Dynamics of an unbalanced shaft interacting with a limited power supply. Nonlinear Dyn. 13(2), 171–187 (1997)

    Article  MATH  Google Scholar 

  8. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Decomposition of governing equations in the analysis of resonant response of a nonlinear and non-ideal vibrating system. Nonlinear Dyn. 82, 299–309 (2015)

    Article  Google Scholar 

  9. Sommerfeld, A.: Naturwissenchftliche Ergebnisse der Neuren Technischen Mechanik. Verein Dtsch. Ing. Zeitscchrift 18, 631–636 (1904)

    Google Scholar 

  10. Kononenko, V.O.: Vibrating Systems with a limited power supply. Illife, London (1969)

    Google Scholar 

  11. Rand, R.H., Kinsey, R.J., Mingori, D.L.: Dynamics of spinup through resonance. Int. J. Non Linear. Mech. 27, 489–502 (1992)

    Article  MATH  Google Scholar 

  12. Blekhman, I.I.: Vibrational Mechanics-Nonlinear Dynamic Effects. General Approach. World Scientific, Singapore (2000)

  13. El-Badawy, A.A.: Behavioral investigation of a nonlinear nonideal vibrating system. J. Vib. Control 13, 203–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dantas, M.J.H., Balthazar, J.M.: On the appearance of a Hopf bifurcation in a non-ideal mechanical problem. Mech. Res. Commun. 30, 493–503 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Felix, J.L.P., Balthazar, J.M.: Comments on a nonlinear and nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer. Nonlinear Dyn. 55, 1–11 (2009)

  16. Felix, J.L.P., Balthazar, J.M., Dantas, M.J.H.: On energy pumping, synchronization and beat phenomenon in a nonideal structure coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 56, 1–11 (2009)

  17. Krasnopolskaya, T.S., Shvets, A.Y.: Chaos in vibrating systems with a limited power-supply. Chaos 3, 387–395 (1993)

    Article  MATH  Google Scholar 

  18. Fidlin, A.: Nonlinear Oscillations in Mechanical Engineering. Springer, Berlin (2006)

    Google Scholar 

  19. Quinn, D., Rand, R., Bridge, J.: The dynamics of resonant capture. Nonlinear Dyn. 8, 1–20 (1995)

    Article  MathSciNet  Google Scholar 

  20. Belato, D., Weber, H.I., Balthazar, J.M., Mook, D.T.: Chaotic vibrations of a nonideal electro-mechanical system. Int. J. Solids Struct. 38, 1699–1706 (2001)

    Article  MATH  Google Scholar 

  21. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. 2nd edn. Springer, New York (1998)

  22. Habib, G., Kerschen, G.: Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber. Proc. R. Soc. A 471, 20140976 (2015). doi:10.1098/rspa.2014.0976

    Article  MathSciNet  Google Scholar 

  23. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  24. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  25. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant FPU12/00537 of the Spanish Ministry of Education, Culture and Sport. The authors gratefully acknowledge the valuable help of Prof. Emilio Freire with the applied mathematical methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González-Carbajal.

Appendix 1: coefficients \(f_{ij} \) and \(g_{ij} \)

Appendix 1: coefficients \(f_{ij} \) and \(g_{ij} \)

The coefficients of functions \(f\left( {z_1 ,z_2 } \right) \) and \(g\left( {z_1 ,z_2 } \right) \) in (33) have the following expressions.

$$\begin{aligned} f_{20}= & {} -\frac{3\rho aR}{4c_2 }\left( {3c_1^2 +c_2^2 } \right) -2c_1 \left( {\frac{2\xi }{aR}+\frac{3}{4}\rho a^{2}} \right) \nonumber \\ \end{aligned}$$
(55)
$$\begin{aligned} f_{02}= & {} -\frac{9\rho aR\omega _0^2 }{4c_2 } \end{aligned}$$
(56)
$$\begin{aligned} f_{11}= & {} -\frac{3}{4}\rho \omega _0 a\left( {a+3R\frac{c_1 }{c_2 }} \right) -\frac{2\xi \omega _0 }{aR} \end{aligned}$$
(57)
$$\begin{aligned} f_{30}= & {} \frac{9\rho c_1 }{4c_2 }\left( {c_1^2 +c_2^2 } \right) \end{aligned}$$
(58)
$$\begin{aligned} f_{03}= & {} \frac{9\rho \omega _0^3 }{4c_2 } \end{aligned}$$
(59)
$$\begin{aligned} f_{21}= & {} \frac{3\rho \omega _0 }{4c_2 }\left( {3c_1^2 +c_2^2 } \right) \end{aligned}$$
(60)
$$\begin{aligned} f_{12}= & {} \frac{9c_1 \rho \omega _0^2 }{4c_2 } \end{aligned}$$
(61)
$$\begin{aligned} g_{20}= & {} \frac{\left( {c_1^2 +c_2^2 } \right) }{\omega _0 }\left\{ {\frac{9\rho a}{4}\left( {R\frac{c_1 }{c_2 }+a} \right) +\frac{4\xi }{aR}} \right\} \end{aligned}$$
(62)
$$\begin{aligned} g_{02}= & {} \frac{3\rho \omega _0 a}{4}\left( {a+3R\frac{c_1 }{c_2 }} \right) \end{aligned}$$
(63)
$$\begin{aligned} g_{11}= & {} \frac{3}{2}\rho a^{2}c_1 +\frac{3\rho aR}{4c_2 }\left( {3c_1^2 +c_2^2 } \right) +\frac{2\xi c_1 }{aR} \end{aligned}$$
(64)
$$\begin{aligned} g_{30}= & {} -\frac{9\rho }{4\omega _0 c_2 }\left( {c_1^2 +c_2^2 } \right) ^{2} \end{aligned}$$
(65)
$$\begin{aligned} g_{03}= & {} -\frac{9c_1 \rho \omega _0^2 }{4c_2 } \end{aligned}$$
(66)
$$\begin{aligned} g_{21}= & {} -\frac{9c_1 \rho }{4c_2 }\left( {c_1^2 +c_2^2 } \right) \end{aligned}$$
(67)
$$\begin{aligned} g_{12}= & {} -\frac{3\rho \omega _0 }{4c_2 }\left( {3c_1^2 +c_2^2 } \right) \end{aligned}$$
(68)

where \(a_\mathrm{eq} \) and \(R_\mathrm{eq} \) have been shortly written as a and R, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Carbajal, J., Domínguez, J. Limit cycles in nonlinear vibrating systems excited by a nonideal energy source with a large slope characteristic. Nonlinear Dyn 87, 1377–1391 (2017). https://doi.org/10.1007/s11071-016-3120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3120-7

Keywords

Navigation