Skip to main content

Methods to Enhance the Beneficial Effects of Exercise in Individuals with Spinal Cord Injuries

  • Chapter
  • First Online:
Regenerative Rehabilitation

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Physical deconditioning commonly occurs following spinal cord injury (SCI) due to loss of voluntary functional movement and resultant increased sedentary behavior. This lesser energy expenditure leads to increased fat mass, decreased lean tissue mass, increased body mass index, declines in cardiac structure and function, reduced insulin sensitivity, and lower cardiorespiratory fitness. Collectively these physiological changes increase the risk of morbidity and mortality from cardiovascular diseases. Exercise as a therapy after an SCI may mitigate these negative health effects and improve quality and longevity of life. However, current exercise interventions for individuals with SCI may not be sufficient to prevent the elevations in risk factors for cardiovascular disease. Therefore, interventions to enhance the effectiveness of exercise therapy may be needed in this population in order to experience the same benefits seen by the uninjured population. Further, adjunctive therapies that mimic exercise may induce health benefits to combat cardiovascular disease. This chapter highlights novel interventions that may enhance function, increase exercise capacity, and decrease disease risk in individuals following an SCI. An effort was made to concentrate this chapter on human investigations of SCI but, where appropriate, investigations using animal models of SCI are referenced and specifically stated. Although this chapter highlights novel interventions to enhance the positive health benefits of exercise, combinations of these interventions may be necessary to improve the health of these individuals and warrants future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afshari K, Dehdashtian A, Haddadi NS, Haj-Mirzaian A, Iranmehr A, Ebrahimi MA, Tavangar SM, Faghir-Ghanesefat H, Mohammadi F, Rahimi N, Javidan AN, Dehpour AR (2018) Anti-inflammatory effects of metformin improve the neuropathic pain and locomotor activity in spinal cord injured rats: introduction of an alternative therapy. Spinal Cord 56:1032–1041

    Article  PubMed  Google Scholar 

  • Akhtar AZ, Pippin JJ, Sandusky CB (2008) Animal models in spinal cord injury: a review. Rev Neurosci 19:47–60

    Article  PubMed  Google Scholar 

  • Al’joboori Y, Massey SJ, Knight SL, Donaldson N d N, Duffell LD (2020) The effects of adding transcutaneous spinal cord stimulation (tSCS) to sit-to-stand training in people with spinal cord injury: a pilot study. J Clin Med 9:2765

    Article  PubMed Central  Google Scholar 

  • Argyropoulou P, Patakas D, Koukou A, Vasiliadis P, Georgopoulos D (1993) Buspirone effect on breathlessness and exercise performance in patients with chronic obstructive pulmonary disease. Respiration 60:216–220

    Article  CAS  PubMed  Google Scholar 

  • Ashammakhi N, Kim H-J, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK (2019) Regenerative therapies for spinal cord injury. Tissue Eng Rev 25:471–491

    Article  Google Scholar 

  • Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter I, Bauman WA, Spungen AM (2015) Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev 52:147–158

    Article  PubMed  Google Scholar 

  • Bakkum A, Paulson T, Bishop N, Goosey-Tolfrey V, Stolwijk-Swüste J, Kuppevelt D, Groot S, Janssen T (2015) Effects of hybrid cycle and handcycle exercise on cardiovascular disease risk factors in people with spinal cord injury: a randomized controlled trial. J Rehabil Med 47:523–530

    Article  PubMed  Google Scholar 

  • Bezdudnaya T, Marchenko V, Zholudeva LV, Spruance VM, Lane MA (2017) Supraspinal respiratory plasticity following acute cervical spinal cord injury. Exp Neurol 293:181–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigford GE, Mendez AJ, Betancourt L, Burns-Drecq P, Backus D, Nash MS (2017) A lifestyle intervention program for successfully addressing major cardiometabolic risks in persons with SCI: a three-subject case series. Spinal Cord Ser Cases 3:1–8

    Article  Google Scholar 

  • Binder-Macleod SA, Snyder-Mackler L (1993) Muscle fatigue: clinical implications for fatigue assessment and neuromuscular electrical stimulation. Phys Ther 73:902–910

    Article  CAS  PubMed  Google Scholar 

  • Borel JC, Wuyam B, Chouri-Pontarollo N, Deschaux C, Levy P, Pépin JL (2008) During exercise non-invasive ventilation in chronic restrictive respiratory failure. Respir Med 102:711–719

    Article  PubMed  Google Scholar 

  • Brunt VE, Eymann TM, Francisco MA, Howard MJ, Minson CT (2016a) Passive heat therapy improves cutaneous microvascular function in sedentary humans via improved nitric oxide-dependent dilation. J Appl Physiol 121:716–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunt VE, Howard MJ, Francisco MA, Ely BR, Minson CT (2016b) Passive heat therapy improves endothelial function, arterial stiffness and blood pressure in sedentary humans. J Physiol 594:5329–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunt VE, Jeckell AT, Ely BR, Howard MJ, Thijssen DHJ, Minson CT (2016c) Acute hot water immersion is protective against impaired vascular function following forearm ischemia-reperfusion in young healthy humans. Am J Physiol - Regul Integr Comp Physiol 311:R1060–R1067

    Article  PubMed  PubMed Central  Google Scholar 

  • Brurok B, Helgerud J, Karlsen T, Leivseth G, Hoff J (2011) Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury. Am J Phys Med Rehabil 90:407–414

    Article  PubMed  Google Scholar 

  • Casaburi R, Barstow TJ, Robinson T, Wasserman K (1992) Dynamic and steady-state ventilatory and gas exchange responses to arm exercise. Med Sci Sports Exerc 24:1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Chilibeck PD, Bell G, Jeon J, Weiss CB, Murdoch G, MacLean I, Ryan E, Burnham R (1999a) Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism 48:1409–1413

    Article  CAS  PubMed  Google Scholar 

  • Chilibeck PD, Jeon J, Weiss C, Bell G, Burnham R (1999b) Histochemical changes in muscle of individuals with spinal cord injury following functional electrical stimulated exercise training. Spinal Cord 37:264–268

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Liao WL, Newton KM, Onario RC, King AM, Desilets FC, Woodard EJ, Eichler ME, Frontera WR, Sabharwal S, Teng YD (2005) Respiratory abnormalities resulting from midcervical spinal cord injury and their reversal by serotonin 1A agonists in conscious rats. J Neurosci 25:4550–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen L, Chen B, Lei Y, Urbin MA, Richardson MSA, Oudega M, Sandhu M, Rymer WZ, Trumbower RD, Mitchell GS, Perez MA (2021) Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia. Exp Neurol 335:113483

    Article  PubMed  Google Scholar 

  • Coombs GB, Barak OF, Phillips AA, Mijacika T, Sarafis ZK, Lee AHX, Squair JW, Bammert TD, DeSouza NM, Gagnon D, Krassioukov AV, Dujic Z, DeSouza CA, Ainslie PN (2019) Acute heat stress reduces biomarkers of endothelial activation but not macro- or microvascular dysfunction in cervical spinal cord injury. Am J Physiol Circ Physiol 316:H722–H733

    Article  CAS  Google Scholar 

  • Cragg JJ, Stone JA, Krassioukov AV (2012) Management of Cardiovascular Disease Risk Factors in individuals with chronic spinal cord injury: an evidence-based review. J Neurotrauma 29:1999–2012

    Article  PubMed  Google Scholar 

  • Cragg JJ, Noonan VK, Krassioukov A, Borisoff J (2013) Cardiovascular disease and spinal cord injury results from a national population health survey. Neurology 81:723–728

    Article  PubMed  PubMed Central  Google Scholar 

  • De Troyer A, Heilporn A (1980) Respiratory mechanics in quadriplegia. The respiratory function of the intercostal muscles. Am Rev Respir Dis 122:591–600

    PubMed  Google Scholar 

  • De Troyer A, Estenne M, Heilporn A (1986) Mechanism of active expiration in tetraplegic subjects. N Engl J Med 314:740–744

    Article  PubMed  Google Scholar 

  • Dearwater SR, Laporte RE, Robertson RJ, Brenes G, Adams LL, Becker D (1986) Activity in the spinal cord-injured patient: an epidemiologic analysis of metabolic parameters. Med Sci Sports Exerc 18:541–544

    Article  CAS  PubMed  Google Scholar 

  • Deley G, Denuziller J, Babault N (2014) Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia. Sport Med 45:71–82

    Article  Google Scholar 

  • DeVivo MJ, Krause JS, Lammertse DP (1999) Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil 80:1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Donovan J, Forrest G, Linsenmeyer T, Kirshblum S (2021) Spinal cord stimulation after spinal cord injury: promising multisystem effects. Curr Phys Med Rehabil Reports 9:23–31

    Article  Google Scholar 

  • Draghici AE, Taylor JA (2018) Baroreflex autonomic control in human spinal cord injury: physiology, measurement, and potential alterations. Auton Neurosci Basic Clin 209:37–42

    Article  Google Scholar 

  • Dreher M, Storre JH, Windisch W (2007) Noninvasive ventilation during walking in patients with severe COPD: a randomised cross-over trial. Eur Respir J 29:930–936

    Article  CAS  PubMed  Google Scholar 

  • Dreher M, Kabitz H-J, Burgardt V, Walterspacher S, Windisch W (2010) Proportional assist ventilation improves exercise capacity in patients with obesity. Respiration 80:106–111

    Article  PubMed  Google Scholar 

  • El-Khatib MF, Kiwan RA, Jamaleddine GW (2003) Buspirone treatment for Apneustic breathing in brain stem infarct. Respir Care 48:956–958

    PubMed  Google Scholar 

  • Ely BR, Clayton ZS, McCurdy CE, Pfeiffer J, Minson CT (2018) Meta-inflammation and cardiometabolic disease in obesity: can heat therapy help? Temperature 5:9–21

    Article  Google Scholar 

  • Ely BR, Clayton ZS, McCurdy CE, Pfeiffer J, Needham KW, Comrada LN, Minson CT, Wiedenfeld-Needham K, Comrada LN, Minson CT, Needham KW, Comrada LN, Minson CT (2019a) Heat therapy improves glucose tolerance and adipose tissue insulin signaling in polycystic ovary syndrome 317:E172–E182

    CAS  Google Scholar 

  • Ely BR, Francisco MA, Halliwill JR, Bryan SD, Comrada LN, Larson EA, Brunt VE, Minson CT (2019b) Heat therapy reduces sympathetic activity and improves cardiovascular risk profile in women who are obese with polycystic ovary syndrome. Am J Physiol Integr Comp Physiol 317:R630–R640

    Article  CAS  Google Scholar 

  • Ely MR, Taylor JA (2021) The practical utility of functional electrical stimulation exercise for cardiovascular health in individuals with spinal cord injury. Curr Phys Med Rehabil Rep 9(3):154–162

    Article  Google Scholar 

  • Ely MR, Singh TK, Baggish AL, Taylor JA (2021) Reductions in cardiac structure and function 24 months after spinal cord injury: a cross-sectional study. Arch Phys Med Rehabil 102(8):1490–1498

    Article  PubMed  Google Scholar 

  • Engelland RE, Hemingway HW, Tomasco OG, Olivencia-Yurvati AH, Romero SA (2020) Acute lower leg hot water immersion protects macrovascular dilator function following ischaemia–reperfusion injury in humans. Exp Physiol 105:302–311

    Article  PubMed  Google Scholar 

  • Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I (2015) Acute cardiorespiratory and metabolic responses during exoskeleton-assisted walking overground among persons with chronic spinal cord injury. Top Spinal Cord Inj Rehabil 21:122–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Fornusek C, Davis GM (2008) Cardiovascular and metabolic responses during functional electric stimulation cycling at different cadences. Arch Phys Med Rehabil 89:719–725

    Article  PubMed  Google Scholar 

  • Franklin BA, McCullough PA (2009) Cardiorespiratory fitness: an independent and additive marker of risk stratification and health outcomes. Mayo Clin Proc 84:776–779

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu J, Wang H, Deng L, Li J (2016) Exercise training promotes functional recovery after spinal cord injury. Neural Plast 2016:1–7

    Article  Google Scholar 

  • Fuller DD, Zabka AG, Baker TL, Mitchell GS (2001) Physiological and genomic consequences of intermittent hypoxia selected contribution: phrenic long-term facilitation requires 5-HT receptor activation during but not following episodic hypoxia. J Appl Physiol 90:2001–2006

    Article  CAS  PubMed  Google Scholar 

  • Fuller DD, Johnson SM, Olson EB, Mitchell GS (2003) Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia after cervical spinal cord injury. J Neurosci 23:2993–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerasimenko YP, Ichiyama RM, Lavrov IA, Courtine G, Cai L, Zhong H, Roy RR, Edgerton VR (2007) Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J Neurophysiol 98:2525–2536

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko YP, Lu DC, Modaber M, Zdunowski S, Gad P, Sayenko DG, Morikawa E, Haakana P, Ferguson AR, Roy RR, Edgerton VR (2015) Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma 32:1968–1980

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbons RS, Stock CG, Andrews BJ, Gall A, Shave RE (2016) The effect of FES-rowing training on cardiac structure and function: pilot studies in people with spinal cord injury. Spinal Cord 54:822–829

    Article  CAS  PubMed  Google Scholar 

  • Glaser RM, Sawka MN, Brune MF, Wilde SW (1980) Physiological responses to maximal effort wheelchair and arm crank ergometry. J Appl Physiol Respir Environ Exerc Physiol 48:1060–1064

    CAS  PubMed  Google Scholar 

  • Gorgey AS, Wade R, Sumrell R, Villadelgado L, Khalil RE, Lavis T (2017) Exoskeleton training may improve level of physical activity after spinal cord injury: a case series. Top. Spinal Cord Inj. Rehabil. 23:245–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Green DJ (2009) Exercise training as vascular medicine: direct impacts on the vasculature in humans. Exerc Sport Sci Rev 37:196–202

    Article  PubMed  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    Article  PubMed  Google Scholar 

  • Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, Ivy JL (2009) Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol 19:614–622

    Article  CAS  PubMed  Google Scholar 

  • Guertin P, Guertin PA (2012) Two promising novel classes of drug treatment in clinical development for acute and chronic spinal cord injury. J Neurol Neurophysiol 3:107

    Article  Google Scholar 

  • Guertin PA, Ung R-V, Rouleau P (2010) Oral administration of a tri-therapy for central pattern generator activation in paraplegic mice: proof-of-concept of efficacy. Biotechnol J 5:421–426

    Article  CAS  PubMed  Google Scholar 

  • Guertin PA, Ung RV, Rouleau P, Steuer I (2011) Effects on locomotion, muscle, bone, and blood induced by a combination therapy eliciting weight-bearing stepping in nonassisted spinal cord-transected mice. Neurorehabil Neural Repair 25:234–242

    Article  PubMed  Google Scholar 

  • Hansebout RR, Blight AR, Fawcett S, Reddy K (1993) 4-Aminopyridine in chronic spinal cord injury: a controlled, double-blind, crossover study in eight patients. J Neurotrauma 10:1–18

    Article  CAS  PubMed  Google Scholar 

  • Harvey LA, Glinsky JV, Bowden JL (2016) The effectiveness of 22 commonly administered physiotherapy interventions for people with spinal cord injury: a systematic review. Spinal Cord 54:914–923

    Article  CAS  PubMed  Google Scholar 

  • Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD (2014) Daily intermittent hypoxia enhances walking after chronic spinal cord injury a randomized trial. Neurology 82:104–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Hettinga DM, Andrews BJ (2008) Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health. Sport. Med. 38:825–838

    Article  Google Scholar 

  • Hooper PL (1992) Hot-tub therapy for type 2 diabetes mellitus. N Engl J Med 327:742–747

    Google Scholar 

  • Hooper PL, Hooper PL (2009) Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones 14:113–115

    Article  CAS  PubMed  Google Scholar 

  • Horowitz M, Assadi H (2010) Heat acclimation-mediated cross-tolerance in cardioprotection: do HSP70 and HIF1α play a role? Ann N Y Acad Sci 1188:199–206

    Article  CAS  PubMed  Google Scholar 

  • Hunt KJ, Saunders BA, Perret C, Berry H, Allan DB, Donaldson N, Kakebeeke TH (2007) Energetics of paraplegic cycling: a new theoretical framework and efficiency characterisation for untrained subjects. Eur J Appl Physiol 101:277–285

    Article  CAS  PubMed  Google Scholar 

  • Ievins A, Moritz CT (2017) Therapeutic stimulation for restoration of function after spinal cord injury. Physiology 32:391–398

    Article  PubMed  Google Scholar 

  • Imamura M, Biro S, Kihara T, Yoshifuku S (2001) Repeated thermal therapy improves impaired vascular endothelial function in patients with coronary risk factors. J Am Coll Cardiol 38:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Jacobs P, Nash M, Rusinowski JW (2001) Circuit training provides cardiorespiratory and strength benefits in persons with paraplegia. Med Sci Sports Exerc 33:711–717

    Article  CAS  PubMed  Google Scholar 

  • Jain NB, Ayers GD, Peterson EN, Harris MB, Morse L, O’Connor KC, Garshick E (2015) Traumatic spinal cord injury in the United States, 1993-2012. JAMA - J Am Med Assoc 313:2236–2243

    Article  CAS  Google Scholar 

  • Jaiswal PB, Tester NJ, Davenport PW (2016) Effect of acute intermittent hypoxia treatment on ventilatory load compensation and magnitude estimation of inspiratory resistive loads in an individual with chronic incomplete cervical spinal cord injury. J Spinal Cord Med 39:103–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Jilge B, Minassian K, Rattay F, Pinter MM, Gerstenbrand F, Binder H, Dimitrijevic MR (2004) Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation. Exp Brain Res 154:308–326

    Article  CAS  PubMed  Google Scholar 

  • Jo HJ, Perez MA (2020) Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Brain 143:1368–1382

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson JM, Proppe DW (2011) Cardiovascular adjustments to heat stress. In: Handbook of physiology. Environmental Physiology, Bethesda, MD

    Google Scholar 

  • Joyner MJ, Green DJ (2009) Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol 587:5551–5558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandilakis C, Sasso-Lance E (2019) Exoskeletons for personal use after spinal cord injury. Arch Phys Med Rehabil 102:331–337

    Article  PubMed  Google Scholar 

  • Karelis AD, Carvalho LP, Castillo MJE, Gagnon DH, Aubertin-Leheudre M (2017) Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med 49:84–87

    Article  PubMed  Google Scholar 

  • Kheck NM, Gannon PJ, Azmitia EC (1995) 5-HT1A receptor localization on the axon hillock of cervical spinal motoneurons in primates. J Comp Neurol 355:211–220

    Article  CAS  PubMed  Google Scholar 

  • Kihara T, Biro S, Imamura M, Yoshifuku S (2002) Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. J Am Coll Cardiol 39:754–759

    Article  PubMed  Google Scholar 

  • Kikkinos P, Faselis C, Meyers J, Sui X, Zhang J, Blair SN (2014) Age-specific exercise capacity threshold for mortality risk assessment in male veterans. Circulation 130:653–658

    Article  Google Scholar 

  • Krause M, Ludwig MS, Heck TG, Takahashi HK (2015) Heat shock proteins and heat therapy for type 2 diabetes. Curr Opin Clin Nutr Metab Care 18:374–380

    Article  CAS  PubMed  Google Scholar 

  • Kurucz I, Morva A, Vaag A, Eriksson K, Huang X, Groop L, Koranyi L (2002) Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Laskin JJ, Ashley EA, Olenik LM, Burnham R, Cumming DC, Steadward RD, Wheeler GD (1993) Electrical stimulation-assisted rowing exercise in spinal cord injured people. A pilot study. Paraplegia 31:534–541

    CAS  PubMed  Google Scholar 

  • Laughlin MH (1999) Cardiovascular response to exercise. Adv. Physiol. Educ 22(1):S244–S259

    Article  Google Scholar 

  • Laughlin MHH, Newcomer SCSC, Bender SBSB (2008) Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol 104:588–600

    Article  PubMed  Google Scholar 

  • LaVela SL, Weaver FM, Goldstein B, Chen K, Miskevics S, Rajan S, Gater DR (2006) Diabetes mellitus in individuals with spinal cord injury or disorder. J Spinal Cord Med 29:387–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Leicht CA, Kouda K, Umemoto Y, Banno M, Kinoshita T, Moriki T, Nakamura T, Bishop NC, Goosey-Tolfrey VL, Tajima F (2015) Hot water immersion induces an acute cytokine response in cervical spinal cord injury. Eur J Appl Physiol 115:2243–2252

    Article  CAS  PubMed  Google Scholar 

  • Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O’Donnell CP, Polotsky VY (2005) Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 97:698–706

    Article  CAS  PubMed  Google Scholar 

  • Ling L, Fuller DD, Bach KB, Kinkead R, Olson EB, Mitchell GS (2001) Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci 21:5381–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locke M, Noble EG, Atkinson BG (1990) Exercising mammals synthesize stress proteins. Am J Physiol - Cell Physiol 258:C723–C1246

    Article  CAS  Google Scholar 

  • Lu DC, Edgerton VR, Modaber M, Auyong N, Morikawa E, Zdunowski S, Sarino ME, Sarrafzadeh M, Nuwer MR, Roy RR, Gerasimenko Y (2016) Engaging cervical spinal cord networks to Reenable volitional control of hand function in tetraplegic patients. Neurorehabil Neural Repair 30:951–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Maloyan A, Eli-Berchoer L, Semenza GL, Gerstenblith G, Stern MD, Horowitz M (2005) HIF-1alpha-targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart. Physiol Genomics 23:79–88

    Article  CAS  PubMed  Google Scholar 

  • Maltais F, Reissmann H, Gottfried SB (1995) Pressure support reduces inspiratory effort and dyspnea during exercise in chronic airflow obstruction. Am J Respir Crit Care Med 151:1027–1033

    CAS  PubMed  Google Scholar 

  • Martin Ginis KA, Van Der Scheer JW, Latimer-Cheung AE, Barrow A, Bourne C, Carruthers P, Bernardi M, Ditor DS, Gaudet S, De Groot S, Hayes KC, Hicks AL, Leicht CA, Lexell J, MacAluso S, Manns PJ, McBride CB, Noonan VK, Pomerleau P, Rimmer JH, Shaw RB, Smith B, Smith KM, Steeves JD, Tussler D, West CR, Wolfe DL, Goosey-Tolfrey VL (2018) Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord 56:308–321

    Article  PubMed  Google Scholar 

  • Massucci M, Brunetti G, Piperno R, Betti L, Franceschini M (1998) Walking with the advanced reciprocating gait orthosis (ARGO) in thoracic paraplegic patients: energy expenditure and cardiorespiratory performance. Spinal Cord 36:223–227

    Article  CAS  PubMed  Google Scholar 

  • McDonald JW, Sadowsky C (2002) Spinal-cord injury. Elsevier Limited, Lancet, pp 417–425

    Google Scholar 

  • McParland C, Krishnan B, Lobo J, Gallagher CG (1992) Effect of physical training on breathing pattern during progressive exercise. Respir Physiol 90:311–323

    Article  CAS  PubMed  Google Scholar 

  • McPherson JG, Miller RR, Perlmutter SI, Poo MM (2015) Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc Natl Acad Sci U S A 112:12193–12198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier HW, Taylor JA (2016) The physiology of exercise in Spinal Cord Injury (SCI): an overview of the limitations and adaptations. In: The physiology of exercise in spinal cord injury. Springer US, Berlin, pp 1–11

    Google Scholar 

  • Meyer C, Hofstoetter US, Hubli M, Hassani RH, Rinaldo C, Curt A, Bolliger M (2020) Immediate effects of transcutaneous spinal cord stimulation on motor function in chronic, sensorimotor incomplete spinal cord injury. J Clin Med 9:3541

    Article  CAS  PubMed Central  Google Scholar 

  • Minassian K, Hofstoetter US, Danner SM, Mayr W, Bruce JA, McKay WB, Tansey KE (2016) Spinal rhythm generation by step-induced feedback and transcutaneous posterior root stimulation in complete spinal cord-injured individuals. Neurorehabil Neural Repair 30:233–243

    Article  PubMed  Google Scholar 

  • Mushahwar VK, Gillard DM, Gauthier MJA, Prochazka A (2002) Intraspinal microstimulation generates locomotor-like and feedback-controlled movements. IEEE Trans Neural Syst Rehabil Eng 10:68–81

    Article  PubMed  Google Scholar 

  • Mutton DL, Scremin AME, Barstow TJ, Scott MD, Kunkel CF, Cagle TG (1997) Physiologic responses during functional electrical stimulation leg cycling and hybrid exercise in spinal cord injured subjects. Arch Phys Med Rehabil 78:712–718

    Article  CAS  PubMed  Google Scholar 

  • Myers J, Lee M, Kiratli J (2007) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am. J. Phys. Med. Rehabil 86:142–152

    Article  PubMed  Google Scholar 

  • Neff D, Kuhlenhoelter AM, Lin C, Wong BJ, Motaganahalli RL, Roseguini BT (2016) Thermotherapy reduces blood pressure and circulating endothelin-1 concentration and enhances leg blood flow in patients with symptomatic peripheral artery disease. Am. J. Physiol. Integr. Comp. Physiol. 311:R392–R400

    Article  Google Scholar 

  • Ozpinar A, Tempel ZJ, Monaco EA (2016) Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Neurosurgery 78:N18–N19

    Article  PubMed  Google Scholar 

  • Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360

    Article  CAS  PubMed  Google Scholar 

  • Pelletier CA, Hicks AL (2013) Importance of exercise in the rehabilitation process after spinal cord injury. Crit Rev Phys Rehabil Med 25:143–158

    Article  Google Scholar 

  • Phillips SM, Stewart BG, Mahoney DJ, Hicks AL, McCartney N, Tang JE, Wilkinson SB, Armstrong D, Tarnopolsky MA (2004) Body-weight-support treadmill training improves blood glucose regulation in persons with incomplete spinal cord injury. J Appl Physiol 97:716–724

    Article  CAS  PubMed  Google Scholar 

  • Qiu S, Taylor JA (2016) Hybrid functional electrical stimulation exercise for improved cardiorespiratory fitness in SCI. In: The physiology of exercise in spinal cord injury. Springer US, New York, pp 269–286

    Chapter  Google Scholar 

  • Qiu S, Alzhab S, Picard G, Taylor JA (2016) Ventilation limits aerobic capacity after functional electrical stimulation row training in high spinal cord injury. Med Sci Sports Exerc 48:1111–1118

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhind SG, Gannon GA, Shephard RJ, Buguet A, Shek PN, Radomski MW (2004) Cytokine induction during exertional hyperthermia is abolished by core temperature clamping: neuroendocrine regulatory mechanisms. Int J Hyperth 20:503–516

    Article  CAS  Google Scholar 

  • Roberts TT, Leonard GR, Cepela DJ (2017) Classifications in brief: American spinal injury association (ASIA) impairment scale. Clin Orthop Relat Res 475:1499–1504

    Article  PubMed  Google Scholar 

  • Rodgers MM, Figoni S, Hooker S, Glaser RM, Figoni SI, Rkt P, Hooker SP, Ezenwa BN, Collins SR, Nlathews T, Gupta SC (1991) Musculoskeletal responses of spinal cord injured individuals to functional neuromuscular stimulation-induced knee extension exercise training REGARDS-physical activity view project impacts of encouraging dog walking on returns of new adopted dogs to a shelter view project Department of Veterans Affairs Musculoskeletal responses of spinal cord injured individuals to functional neuromuscular stimulation-induced knee extension exercise. Artic J Rehabil Res Dev 28:19–26

    Article  CAS  Google Scholar 

  • Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2012) Heart disease and stroke statistics-2012 update: a report from the American heart association. Circulation 125:e2

    PubMed  Google Scholar 

  • Romero SA, Gagnon D, Adams AN, Cramer MN, Kouda K, Crandall CG (2017) Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans. Am. J. Physiol. Circ. Physiol. 312:H89–H97

    Article  Google Scholar 

  • Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667

    Article  CAS  PubMed  Google Scholar 

  • Sabatier MJ, Stoner L, Mahoney ET, Black C, Elder C, Dudley GA, McCully K (2006) Electrically stimulated resistance training in SCI individuals increases muscle fatigue resistance but not femoral artery size or blood flow. Spinal Cord 44:227–233

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Hashimoto T, Iwata H, Takahashi K, Fukumizu M, Sasaki M, Hanaoka S, Sugai K (1999) Apneustic breathing in children with brainstem damage due to hypoxic-ischemic encephalopathy. Dev Med Child Neurol 41:560–567

    Article  CAS  PubMed  Google Scholar 

  • Sandrow-Feinberg HR, Izzi J, Shumsky JS, Zhukareva V, Houle JD (2009) Forced exercise as a rehabilitation strategy after unilateral cervical spinal cord contusion injury. J Neurotrauma 26:721–731

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankari A, Bascom AT, Riehani A, Badr MS (2015) Tetraplegia is associated with enhanced peripheral chemoreflex sensitivity and ventilatory long-term facilitation. J Appl Physiol 119:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Sawka MN, Glaser RM, Wilde SW, Von Luhrte TC (1980) Metabolic and circulatory responses to wheelchair and arm crank exercise. J Appl Physiol Respir Environ Exerc Physiol 49:784–788

    CAS  PubMed  Google Scholar 

  • Sayenko DG, Rath M, Ferguson AR, Burdick JW, Havton LA, Edgerton VR, Gerasimenko YP (2019) Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury. J Neurotrauma 36:1435–1450

    Article  PubMed  PubMed Central  Google Scholar 

  • Schilero GJ, Radulovic M, Wecht JM, Spungen AM, Bauman WA, Lesser M (2014) A center’s experience: pulmonary function in spinal cord injury. Lung 192:339–346

    Article  PubMed  Google Scholar 

  • Schmidt KD, Chan CW (1992) Thermoregulation and fever in Normal persons and in those with spinal cord injuries. Mayo Clin Proc 67:469–475

    Article  CAS  PubMed  Google Scholar 

  • Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, Mcdonald-Smith GP, Gao H, Hennessy L, Finnerty CC, López CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields RK (2002) Muscular, skeletal, and neural adaptations following spinal cord injury. J Orthop Sports Phys Ther 32:65–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivas S, Wali AR, Pham MH (2019) Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature. Neurosurg Focus 46:1–18

    Article  Google Scholar 

  • Sunshine MD, Cho FS, Lockwood DR, Fechko AS, Kasten MR, Moritz CT (2013) Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury. J Neural Eng 10:036001

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor AW, McDonell E, Brassard L (1986) The effects of an arm ergometer training programme on wheelchair subjects. Paraplegia 24:105–114

    CAS  PubMed  Google Scholar 

  • Taylor JA, Picard G, Widrick JJ (2011) Aerobic capacity with hybrid FES rowing in spinal cord injury: comparison with arms-only exercise and preliminary findings with regular training. PM R 3:817–824

    Article  PubMed  Google Scholar 

  • Taylor JA, Picard G, Porter A, Morse LR, Pronovost MF, Deley G (2014) Hybrid functional electrical stimulation exercise training alters the relationship between spinal cord injury level and aerobic capacity. Arch Phys Med Rehabil 95:2172–2179

    Article  PubMed  PubMed Central  Google Scholar 

  • Tei C, Horikiri Y, Park JC, Jeong JW, Chang KS, Toyama Y, Tanaka N (1995) Acute hemodynamic improvement by thermal vasodilation in congestive heart failure. Circulation 91:2582–2590

    Article  CAS  PubMed  Google Scholar 

  • Teng YD, Bingaman M, Taveira-DaSilva AM, Pace PP, Gillis RA, Wrathall JR (2003) Serotonin 1A receptor agonists reverse respiratory abnormalities in spinal cord-injured rats. J Neurosci 23:4182–4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester NJ, Fuller DD, Fromm JS, Spiess MR, Behrman AL, Mateika JH (2014) Long-term facilitation of ventilation in humans with chronic spinal cord injury. Am J Respir Crit Care Med 189:57–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Turiel M, Sitia S, Cicala S, Magagnin V, Bo I, Porta A, Caiani E, Ricci C, Licari V, De Gennaro Colonna V, Tomasoni L (2011) Robotic treadmill training improves cardiovascular function in spinal cord injury patients. Int J Cardiol 149:323–329

    Article  PubMed  Google Scholar 

  • Tweedy SM, Beckman EM, Geraghty TJ, Theisen D, Perret C, Harvey LA, Vanlandewijck YC (2017) Exercise and sports science Australia (ESSA) position statement on exercise and spinal cord injury. J Sci Med Sport 20:108–115

    Article  PubMed  Google Scholar 

  • Ung RV, Rouleau P, Guertin PA (2012) Functional and physiological effects of treadmill training induced by buspirone, carbidopa, and L-DOPA in clenbuterol-treated paraplegic mice. Neurorehabil Neural Repair 26:385–394

    Article  PubMed  Google Scholar 

  • Van Den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G (2012) Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science (80-) 336:1182–1185

    Article  CAS  Google Scholar 

  • van’t Hul A, Gosselink R, Hollander P, Postmus P, Kwakkel G (2004) Acute effects of inspiratory pressure support during exercise in patients with COPD. Eur Respir J 23:34–40

    Article  Google Scholar 

  • van’t Hul A, Gosselink R, Hollander P, Postmus P, Kwakkel G (2006) Training with inspiratory pressure support in patients with severe COPD. Eur Respir J 27:65–72

    Article  Google Scholar 

  • Vila B, Servera E, Marín J, Díaz J, Giménez M, Komaroff E, Bach J (2007) Noninvasive Ventilatory assistance during exercise for patients with kyphoscoliosis. Am J Phys Med Rehabil 86:672–677

    Article  PubMed  Google Scholar 

  • Vivodtzev I, Picard G, Cepeda FX, Taylor JA (2020) Acute Ventilatory support during whole-body hybrid rowing in patients with high-level spinal cord injury: a randomized controlled crossover trial. In: Chest. Elsevier Inc, Amsterdam, pp 1230–1240

    Google Scholar 

  • Vivodtzev I, Picard G, O’Connor K, Taylor JA (2021) Serotonin 1A agonist and cardiopulmonary improvements with whole-body exercise in acute, high-level spinal cord injury: a retrospective analysis. Eur J Appl Physiol 121:453–463

    Article  CAS  PubMed  Google Scholar 

  • Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seáñez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G (2018) Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563:65–93

    Article  CAS  PubMed  Google Scholar 

  • Warburton DER, Eng JJ, Krassioukov A, Sproule S (2007) Cardiovascular health and exercise rehabilitation in spinal cord injury. Top Spinal Cord Inj Rehabil 13:98–122

    Article  PubMed  Google Scholar 

  • Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9(3):207–231

    Article  CAS  PubMed  Google Scholar 

  • Weaver FM, Collins EG, Kurichi J, Miskevics S, Smith B, Rajan S, Gater D (2007) Prevalence of obesity and high blood pressure in veterans with spinal cord injuries and disorders. Am J Phys Med Rehabil 86:22–29

    Article  PubMed  Google Scholar 

  • Whiteneck GG, Charlifue SW, Frankel HL, Fraser MH, Gardner BP, Gerhart KA, Krishnan KR, Menter RR, Nuseibeh I, Short DJ, Silver JR (1992) Mortality, morbidity, and psychosocial outcomes of persons spinal cord injured more than 20 years ago. Paraplegia 30:617–630

    CAS  PubMed  Google Scholar 

  • WHO (2013) World Health Organization and international spinal cord society. International perspectives on spinal cord injury. [WWW Document]

    Google Scholar 

  • Williams AM, Gee CM, Voss C, West CR (2019) Cardiac consequences of spinal cord injury: systematic review and meta-analysis. Heart 105:217–225

    Article  PubMed  Google Scholar 

  • Wu M, Landry JM, Schmit BD, Hornby TG, Yen SC (2012) Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Arch Phys Med Rehabil 93:782–789

    Article  PubMed  Google Scholar 

  • Zhang D, Xuan J, Zheng BB, Zhou YL, Lin Y, Wu YS, Zhou YF, Huang YX, Wang Q, Shen LY, Mao C, Wu Y, Wang XY, Tian NF, Xu HZ, Zhang XL (2017) Metformin improves functional recovery after spinal cord injury via autophagy flux stimulation. Mol Neurobiol 54:3327–3341

    Article  CAS  PubMed  Google Scholar 

  • Zimmer MB, Goshgarian HG (2007) Spinal cord injury in neonates alters respiratory motor output via supraspinal mechanisms. Exp Neurol 206:137–145

    Article  PubMed  Google Scholar 

  • Zimmermann JB, Seki K, Jackson A (2011) Reanimating the arm and hand with intraspinal microstimulation. J Neural Eng 8:054001

    Article  PubMed  PubMed Central  Google Scholar 

  • Zörner B, Schwab ME (2010) Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci 1198:E22–E34

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrew Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ely, M.R., Ely, B.R., Solinsky, R.J., Taylor, J.A. (2022). Methods to Enhance the Beneficial Effects of Exercise in Individuals with Spinal Cord Injuries. In: Greising, S.M., Call, J.A. (eds) Regenerative Rehabilitation. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-95884-8_12

Download citation

Publish with us

Policies and ethics