Skip to main content

Advertisement

Log in

A Center’s Experience: Pulmonary Function in Spinal Cord Injury

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Traumatic spinal cord injury (SCI) is associated with significant psychological and physical challenges. A multidisciplinary approach to management is essential to ensure recovery during the acute phase, and comprehensive rehabilitative strategies are necessary to foster independence and quality of life throughout the chronic phase of injury. Complications that beset these individuals are often a unique consequence of SCI, and knowledge of the effects of SCI upon organ systems is essential for appropriate management. According to the National SCI Statistical Center (NSCISC), as of 2010 there were an estimated 265,000 persons living with SCI in the United States, with approximately 12,000 incidence cases annually. Although life expectancy for newly injured individuals with SCI is markedly reduced, persons with chronic SCI are expected to live about as long as individuals without SCI; however, longevity varies inversely with level of injury. Since 2005, 56 % of persons with SCI are tetraplegic, and due to paralysis of respiratory muscles, these individuals may be especially prone to pulmonary complications, which remain a major cause of mortality among persons with chronic SCI. We at the VA Rehabilitation Research and Development Center of Excellence for the Medical Consequences of SCI at the James J. Peters VA Medical Center have devoted more than 25 years to the study of secondary medical conditions that complicate SCI. Herein, we review pulmonary research at the Center, both our past and future endeavors, which form an integral part of our multidisciplinary approach toward achieving a greater understanding of and improving care for veterans with SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stone DJ, Keltz H (1963) The effect of respiratory muscle dysfunction on pulmonary function. Studies in patients with spinal cord injuries. Am Rev Respir Dis 88:621–629

    CAS  PubMed  Google Scholar 

  2. Hemingway A, Bors E, Hobby RP (1958) An investigation of the pulmonary function of paraplegics. J Clin Invest 37(5):773–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Fugl-Meyer AR (1971) Effects of respiratory muscle paralysis in tetraplegic and paraplegic patients. Scand J Rehabil Med 3(4):141–150

    CAS  PubMed  Google Scholar 

  4. Fugl-Meyer AR, Grimby G (1971) Ventilatory function in tetraplegic patients. Scand J Rehabil Med 3(4):151–160

    CAS  PubMed  Google Scholar 

  5. Ohry A, Molho M, Rozin R (1975) Alterations of pulmonary function in spinal cord injured patients. Paraplegia 13(2):101–108

    Article  CAS  PubMed  Google Scholar 

  6. Kokkola K, Moller K, Lehtonen T (1975) Pulmonary function in tetraplegic and paraplegic patients. Ann Clin Res 7(2):76–79

    CAS  PubMed  Google Scholar 

  7. Forner JV (1980) Lung volumes and mechanics of breathing in tetraplegics. Paraplegia 18(4):258–266

    Article  CAS  PubMed  Google Scholar 

  8. Bluechardt MH et al (1992) Repeated measurements of pulmonary function following spinal cord injury. Paraplegia 30(11):768–774

    Article  CAS  PubMed  Google Scholar 

  9. Roth EJ et al (1995) Pulmonary function testing in spinal cord injury: correlation with vital capacity. Paraplegia 33(8):454–457

    Article  CAS  PubMed  Google Scholar 

  10. Almenoff PL et al (1995) Pulmonary function survey in spinal cord injury: influences of smoking and level and completeness of injury. Lung 173(5):297–306

    Article  CAS  PubMed  Google Scholar 

  11. Linn WS et al (2000) Pulmonary function in chronic spinal cord injury: a cross-sectional survey of 222 southern California adult outpatients. Arch Phys Med Rehabil 81(6):757–763

    Article  CAS  PubMed  Google Scholar 

  12. Linn WS et al (2001) Forced vital capacity in two large outpatient populations with chronic spinal cord injury. Spinal Cord 39(5):263–268

    Article  CAS  PubMed  Google Scholar 

  13. Stolzmann KL et al (2008) Longitudinal change in FEV1 and FVC in chronic spinal cord injury. Am J Respir Crit Care Med 177(7):781–786

    Article  PubMed Central  PubMed  Google Scholar 

  14. De Troyer A, Heilporn A (1980) Respiratory mechanics in quadriplegia. The respiratory function of the intercostal muscles. Am Rev Respir Dis 122(4):591–600

    PubMed  Google Scholar 

  15. Scanlon PD et al (1989) Respiratory mechanics in acute quadriplegia. Lung and chest wall compliance and dimensional changes during respiratory maneuvers. Am Rev Respir Dis 139(3):615–620

    Article  CAS  PubMed  Google Scholar 

  16. Estenne M, De Troyer A (1985) Relationship between respiratory muscle electromyogram and rib cage motion in tetraplegia. Am Rev Respir Dis 132(1):53–59

    CAS  PubMed  Google Scholar 

  17. De Troyer A, Estenne M, Vincken W (1986) Rib cage motion and muscle use in high tetraplegics. Am Rev Respir Dis 133(6):1115–1119

    PubMed  Google Scholar 

  18. Manning H et al (1992) Oxygen cost of resistive-loaded breathing in quadriplegia. J Appl Physiol 73(3):825–831

    CAS  PubMed  Google Scholar 

  19. DeVivo MJ, Krause JS, Lammertse DP (1999) Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil 80(11):1411–1419

    Article  CAS  PubMed  Google Scholar 

  20. Spungen AM et al (1993) Pulmonary obstruction in individuals with cervical spinal cord lesions unmasked by bronchodilator administration. Paraplegia 31(6):404–407

    Article  CAS  PubMed  Google Scholar 

  21. Almenoff PL et al (1995) Bronchodilatory effects of ipratropium bromide in patients with tetraplegia. Paraplegia 33(5):274–277

    Article  CAS  PubMed  Google Scholar 

  22. Butler J et al (1960) Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease. J Clin Invest 39:584–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Van Noord JA et al (1994) Assessment of reversibility of airflow obstruction. Am J Respir Crit Care Med 150(2):551–554

    Article  PubMed  Google Scholar 

  24. Schilero GJ et al (2005) Assessment of airway caliber and bronchodilator responsiveness in subjects with spinal cord injury. Chest 127(1):149–155

    Article  PubMed  Google Scholar 

  25. Radulovic M et al (2008) Airflow obstruction and reversibility in spinal cord injury: evidence for functional sympathetic innervation. Arch Phys Med Rehabil 89(12):2349–2353

    Article  PubMed  Google Scholar 

  26. Dicpinigaitis PV et al (1994) Bronchial hyperresponsiveness after cervical spinal cord injury. Chest 105(4):1073–1076

    Article  CAS  PubMed  Google Scholar 

  27. Singas E et al (1996) Airway hyperresponsiveness to methacholine in subjects with spinal cord injury. Chest 110(4):911–915

    Article  CAS  PubMed  Google Scholar 

  28. Grimm DR et al (1999) Airway hyperresponsiveness to ultrasonically nebulized distilled water in subjects with tetraplegia. J Appl Physiol 86(4):1165–1169

    CAS  PubMed  Google Scholar 

  29. Fein ED et al (1998) The effects of ipratropium bromide on histamine-induced bronchoconstriction in subjects with cervical spinal cord injury. J Asthma 35(1):49–55

    Article  CAS  PubMed  Google Scholar 

  30. Grimm DR et al (2000) Airway hyperreactivity in subjects with tetraplegia is associated with reduced baseline airway caliber. Chest 118(5):1397–1404

    Article  CAS  PubMed  Google Scholar 

  31. Cockcroft DW, Davis BE (2006) Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol 118(3):551–559 quiz 560–561

    Article  CAS  PubMed  Google Scholar 

  32. Dicpinigaitis PV et al (1994) Inhibition of bronchial hyperresponsiveness by the GABA-agonist baclofen. Chest 106(3):758–761

    Article  CAS  PubMed  Google Scholar 

  33. Singas E et al (1999) Inhibition of airway hyperreactivity by oxybutynin chloride in subjects with cervical spinal cord injury. Spinal Cord 37(4):279–283

    Article  CAS  PubMed  Google Scholar 

  34. DeLuca RV et al (1999) Effects of a beta2-agonist on airway hyperreactivity in subjects with cervical spinal cord injury. Chest 115(6):1533–1538

    Article  CAS  PubMed  Google Scholar 

  35. Spungen AM et al (1997) Self-reported prevalence of pulmonary symptoms in subjects with spinal cord injury. Spinal Cord 35(10):652–657

    Article  CAS  PubMed  Google Scholar 

  36. Spungen AM et al (2002) Relationship of respiratory symptoms with smoking status and pulmonary function in chronic spinal cord injury. J Spinal Cord Med 25(1):23–27

    PubMed  Google Scholar 

  37. Lougheed MD et al (2002) Respiratory sensation and ventilatory mechanics during induced bronchoconstriction in spontaneously breathing low cervical quadriplegia. Am J Respir Crit Care Med 166(3):370–376

    Article  PubMed  Google Scholar 

  38. Gounden P (1997) Static respiratory pressures in patients with post-traumatic tetraplegia. Spinal Cord 35(1):43–47

    Article  CAS  PubMed  Google Scholar 

  39. De Troyer A, Estenne M (1991) The expiratory muscles in tetraplegia. Paraplegia 29(6):359–363

    Article  PubMed  Google Scholar 

  40. De Troyer A, Estenne M, Heilporn A (1986) Mechanism of active expiration in tetraplegic subjects. N Engl J Med 314(12):740–744

    Article  PubMed  Google Scholar 

  41. Fujiwara T, Hara Y, Chino N (1999) Expiratory function in complete tetraplegics: study of spirometry, maximal expiratory pressure, and muscle activity of pectoralis major and latissimus dorsi muscles. Am J Phys Med Rehabil 78(5):464–469

    Article  CAS  PubMed  Google Scholar 

  42. Van Houtte S, Vanlandewijck Y, Gosselink R (2006) Respiratory muscle training in persons with spinal cord injury: a systematic review. Respir Med 100(11):1886–1895

    Article  PubMed  Google Scholar 

  43. Estenne M et al (1989) The effect of pectoralis muscle training in tetraplegic subjects. Am Rev Respir Dis 139(5):1218–1222

    Article  CAS  PubMed  Google Scholar 

  44. DiMarco AF (2005) Restoration of respiratory muscle function following spinal cord injury. Review of electrical and magnetic stimulation techniques. Respir Physiol Neurobiol 147(2–3):273–287

    Article  PubMed  Google Scholar 

  45. Signorile JF et al (1995) Increased muscle strength in paralyzed patients after spinal cord injury: effect of beta-2 adrenergic agonist. Arch Phys Med Rehabil 76(1):55–58

    Article  CAS  PubMed  Google Scholar 

  46. Murphy RJ et al (1999) Salbutamol effect in spinal cord injured individuals undergoing functional electrical stimulation training. Arch Phys Med Rehabil 80(10):1264–1267

    Article  CAS  PubMed  Google Scholar 

  47. Grimm DR et al (2006) Salmeterol improves pulmonary function in persons with tetraplegia. Lung 184(6):335–339

    Article  PubMed  Google Scholar 

  48. Schilero GJ et al (2004) Bronchodilator responses to metaproterenol sulfate among subjects with spinal cord injury. J Rehabil Res Dev 41(1):59–64

    Article  PubMed  Google Scholar 

  49. Jackson AB, Groomes TE (1994) Incidence of respiratory complications following spinal cord injury. Arch Phys Med Rehabil 75(3):270–275

    Article  CAS  PubMed  Google Scholar 

  50. Gris D, Hamilton EF, Weaver LC (2008) The systemic inflammatory response after spinal cord injury damages lungs and kidneys. Exp Neurol 211(1):259–270

    Article  CAS  PubMed  Google Scholar 

  51. Wang TD et al (2007) Circulating levels of markers of inflammation and endothelial activation are increased in men with chronic spinal cord injury. J Formos Med Assoc 106(11):919–928

    Article  CAS  PubMed  Google Scholar 

  52. Radulovic M et al (2010) Exhaled Nitric oxide levels are elevated in persons with tetraplegia and comparable to that in mild asthmatics. Lung 188(3):259–262

    Article  CAS  PubMed  Google Scholar 

  53. Di Maria GU et al (2000) Role of endogenous nitric oxide in asthma. Allergy 55(Suppl 61):31–35

    Article  PubMed  Google Scholar 

  54. Radulovic M, Schilero GJ, Wecht JM, La Fountaine M, Rosado-Rivera D, Bauman W (2011) Comparison of exhaled breath condensate inflammatory biomarker profiles among persons with tetraplegia, asthma and able-bodied controls. Presented at the Paralyzed Veterans of America’s Summit 2011, Orlando, FL

  55. Shimizu Y, Dobashi K, Mori M (2007) Exhaled breath marker in asthma patients with gastroesophageal reflux disease. J Clin Biochem Nutr 41(3):147–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Shimizu Y et al (2009) Assessment of airway inflammation by exhaled breath condensate and impedance due to gastroesophageal reflux disease (GERD). Inflamm Allergy Drug Targets 8(4):292–296

    Article  CAS  PubMed  Google Scholar 

  57. Shimizu Y et al (2007) Proton pump inhibitor improves breath marker in moderate asthma with gastroesophageal reflux disease. Respiration 74(5):558–564

    Article  CAS  PubMed  Google Scholar 

  58. Short DJ, Stradling JR, Williams SJ (1992) Prevalence of sleep apnoea in patients over 40 years of age with spinal cord lesions. J Neurol Neurosurg Psychiatry 55(11):1032–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. McEvoy RD et al (1995) Sleep apnoea in patients with quadriplegia. Thorax 50(6):613–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Stockhammer E et al (2002) Characteristics of sleep apnea syndrome in tetraplegic patients. Spinal Cord 40(6):286–294

    Article  CAS  PubMed  Google Scholar 

  61. Leduc BE et al (2007) Estimated prevalence of obstructive sleep apnea–hypopnea syndrome after cervical cord injury. Arch Phys Med Rehabil 88(3):333–337

    Article  PubMed  Google Scholar 

  62. Young T et al (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328(17):1230–1235

    Article  CAS  PubMed  Google Scholar 

  63. Schilero GJ et al (2009) Pulmonary function and spinal cord injury. Respir Physiol Neurobiol 166(3):129–141

    Article  PubMed  Google Scholar 

  64. Narkiewicz K, Somers VK (2003) Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand 177(3):385–390

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Schilero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilero, G.J., Radulovic, M., Wecht, J.M. et al. A Center’s Experience: Pulmonary Function in Spinal Cord Injury. Lung 192, 339–346 (2014). https://doi.org/10.1007/s00408-014-9575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-014-9575-8

Keywords

Navigation