Skip to main content

Human Milk and Xenobiotics

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Human milk as the golden standard of nutrition is fundamental nourishment for the newborn baby. Due to the fact that it contains essential ingredients such as proteins, fatty acids, carbohydrates, micro- and macroelements, and others, it affects proper development of infants. However, it also contains secretions from the mother’s body, in which there may be impurities accumulated in her organism and that will be excreted into precious milk. Therefore, the main aim of the following chapter was to characterize the impurities that could potentially be present in breast milk. These impurities include organic contaminations, such as polychlorinated biphenyls, brominated flame retardants, parabens, bisphenols, and perfluoroalkyl and polyfluoroalkyl substances. Furthermore milk may be contaminated also by heavy metals, mycotoxins, and pharmaceutical residues. The challenge for analytical chemistry is therefore to establish methods to monitor milk for these compounds. For these purposes in the presented chapter, attention is brought to the procedures used so far for identification and determination of these compounds in maternal milk with liquid and gas chromatography and solid-phase extraction or liquid-liquid extraction for sample preparation. However, due to the complex composition of the milk matrix, attention was also paid to new directions in analysis, including sample preparation method developed considering trends in miniaturization and synthesis of new sorption materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pajewska-Szmyt, M., Sinkiewicz-Darol, E., & Gadzała-Kopciuch, R. (2019). The impact of environmental pollution on the quality of mother’s milk. Environmental Science and Pollution Research, 26, 7405–7427.

    Article  CAS  PubMed  Google Scholar 

  2. Tsakiris, I. N., Kokkinakis, E., Dumanov, J. M., et al. (2013). Comparative evaluation of xenobiotics in human and dietary milk: Persistent organic pollutants and mycotoxins. Cellular and Molecular Biology, 59, 58–66.

    CAS  PubMed  Google Scholar 

  3. Lopes, B. R., Barreiro, J. C., & Cass, Q. B. (2016). Bioanalytical challenge: A review of environmental and pharmaceuticals contaminants in human milk. Journal of Pharmaceutical and Biomedical Analysis, 130, 318–325.

    Article  CAS  PubMed  Google Scholar 

  4. Malliari, E., & Kalantzi, O. I. (2017). Children’s exposure to brominated flame retardants in indoor environments – A review. Environment International, 108, 146–169.

    Article  CAS  PubMed  Google Scholar 

  5. Grecco, C. F., Souza, I. D., & Queiroz, M. E. C. (2018). Recent development of chromatographic methods to determine parabens in breast milk samples: A review. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 1093–1094, 82–90.

    Article  PubMed  CAS  Google Scholar 

  6. Mercogliano, R., & Santonicola, S. (2018). Investigation on bisphenol A levels in human milk and dairy supply chain: A review. Food and Chemical Toxicology, 114, 98–107.

    Article  CAS  PubMed  Google Scholar 

  7. Dong, R. H., Wu, Y., Chen, J. S., et al. (2019). Lactational exposure to phthalates impaired the neurodevelopmental function of infants at 9 months in a pilot prospective study. Chemosphere, 226, 351–359.

    Article  CAS  PubMed  Google Scholar 

  8. Macheka-Tendenguwo, L. R., Olowoyo, J. O., Mugivhisa, L. L., & Abafe, O. A. (2018). Per- and polyfluoroalkyl substances in human breast milk and current analytical methods. Environmental Science and Pollution Research, 25, 36064–36086.

    Article  CAS  PubMed  Google Scholar 

  9. Luzardo, O. P., Ruiz-Suárez, N., Almeida-González, M., et al. (2013). Multi-residue method for the determination of 57 persistent organic pollutants in human milk and colostrum using a QuEChERS-based extraction procedure. Analytical and Bioanalytical Chemistry, 405, 9523–9536.

    Article  CAS  PubMed  Google Scholar 

  10. Jovanović, G., Romanić, S. H., Stojić, A., et al. (2019). Introducing of modeling techniques in the research of POPs in breast milk – A pilot study. Ecotoxicology and Environmental Safety, 172, 341–347.

    Article  PubMed  CAS  Google Scholar 

  11. Barbarossa, A., Masetti, R., Gazzotti, T., et al. (2013). Perfluoroalkyl substances in human milk: A first survey in Italy. Environment International, 51, 27–30.

    Article  CAS  PubMed  Google Scholar 

  12. Beser, M. I., Pardo, O., Beltrán, J., & Yusà, V. (2019). Determination of 21 perfluoroalkyl substances and organophosphorus compounds in breast milk by liquid chromatography coupled to orbitrap high-resolution mass spectrometry. Analytica Chimica Acta, 1049, 123–132.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, S., Kim, S., Park, J., et al. (2018). Perfluoroalkyl substances (PFASs) in breast milk from Korea: Time-course trends, influencing factors, and infant exposure. Science of the Total Environment, 612, 286–292.

    Article  CAS  PubMed  Google Scholar 

  14. Inthavong, C., Hommet, F., Bordet, F., et al. (2017). Simultaneous liquid chromatography–tandem mass spectrometry analysis of brominated flame retardants (tetrabromobisphenol A and hexabromocyclododecane diastereoisomers) in French breast milk. Chemosphere, 186, 762–769.

    Article  CAS  PubMed  Google Scholar 

  15. Tue, N. M., Sudaryanto, A., Minh, T. B., et al. (2010). Accumulation of polychlorinated biphenyls and brominated flame retardants in breast milk from women living in Vietnamese e-waste recycling sites. Science of the Total Environment, 408, 2155–2162.

    Article  CAS  PubMed  Google Scholar 

  16. Fujii, Y., Kato, Y., Masuda, N., et al. (2018). Contamination trends and factors affecting the transfer of hexabromocyclododecane diastereomers, tetrabromobisphenol A, and 2,4,6-tribromophenol to breast milk in Japan. Environmental Pollution, 237, 936–943.

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez-Gomez, R., Dorival-Garcia, N., Zafra-Gomez, A., et al. (2015). New method for the determination of parabens and bisphenol A in human milk samples using ultrasound-assisted extraction and clean-up with dispersive sorbents prior to UHPLC-MS/MS analysis. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 992, 47–55.

    Article  CAS  PubMed  Google Scholar 

  18. Dualde, P., Pardo, O., Fernández, S. F., et al. (2019). Determination of four parabens and bisphenols A, F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1114–1115, 154–166.

    Article  PubMed  CAS  Google Scholar 

  19. Grecco, C. F., Souza, I. D., Acquaro Junior, V. R., & Queiroz, M. E. C. (2019). Determination of parabens in breast milk samples by dispersive liquid-liquid microextraction (DLLME) and ultra-high-performance liquid chromatography tandem mass spectrometry. Journal of the Brazilian Chemical Society, 30, 48–59.

    CAS  Google Scholar 

  20. Fotouhi, M., Seidi, S., Shanehsaz, M., & Naseri, M. T. (2017). Magnetically assisted matrix solid phase dispersion for extraction of parabens from breast milks. Journal of Chromatography. A, 1504, 17–26.

    Article  CAS  PubMed  Google Scholar 

  21. Rodríguez-Gómez, R., Roldán-Pijuán, M., Lucena, R., et al. (2014). Stir-membrane solid-liquid-liquid microextraction for the determination of parabens in human breast milk samples by ultra high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1354, 26–33.

    Article  PubMed  CAS  Google Scholar 

  22. Melo, L. P., & Queiroz, M. E. C. (2013). A molecularly imprinted polymer for microdisc solid-phase extraction of parabens from human milk samples. Analytical Methods, 5, 3538–3545.

    Article  CAS  Google Scholar 

  23. Rodríguez-Gómez, R., Dorival-García, N., Zafra-Gómez, A., et al. (2015). A new method for the determination of parabens and bisphenol A in human milk samples using ultrasound-assisted extraction and clean-up with dispersive sorbents prior to UHPLC-MS/MS analysis. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 992, 47–55.

    Article  PubMed  CAS  Google Scholar 

  24. Ji, Y., Yin, J., Xu, Z., et al. (2009). Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Analytical and Bioanalytical Chemistry, 395, 1125–1133.

    Article  CAS  PubMed  Google Scholar 

  25. Samiee, F., Vahidinia, A., Taravati, J. M., & Leili, M. (2019). Exposure to heavy metals released to the environment through breastfeeding: A probabilistic risk estimation. Science of The Total Environment, 650, 3075–3083.

    Article  CAS  PubMed  Google Scholar 

  26. Javad, M. T., Vahidinia, A., Samiee, F., et al. (2018). Analysis of aluminum, minerals and trace elements in the milk samples from lactating mothers in Hamadan, Iran. Journal of Trace Elements in Medicine and Biology, 50, 8–15.

    Article  CAS  Google Scholar 

  27. Fríguls, B., Joya, X., García-Algar, O., et al. (2010). A comprehensive review of assay methods to determine drugs in breast milk and the safety of breastfeeding when taking drugs. Analytical and Bioanalytical Chemistry, 397, 1157–1179.

    Article  PubMed  CAS  Google Scholar 

  28. Datta, P., Baker, T., & Hale, T. W. (2019). Balancing the use of medications while maintaining breastfeeding. Clinics in Perinatology, 46, 367–382.

    Article  PubMed  Google Scholar 

  29. Rigourd, V., de Villepin, B., Amirouche, A., et al. (2014). Ibuprofen concentrations in human mature milk – First data about pharmacokinetics study in breast milk with AOR-10127 “Antalait” study. Therapeutic Drug Monitoring, 36, 590–596.

    Article  CAS  PubMed  Google Scholar 

  30. Weibert, R. T., Townsend, R. J., Kaiser, D. G., et al. (1982). Lack of ibuprofen secretion into human milk. Clinical Pharmacy, 1(5), 457–458.

    CAS  PubMed  Google Scholar 

  31. Frey, O. R., Scheidt, P., & von Brenndorff, A. L. (1999). Adverse effects in a newborn infant brestfed by a mother treated with doxepin. Annals of Pharmacotherapy, 33(6), 690–693.

    Article  CAS  PubMed  Google Scholar 

  32. Kirchheiner, J., Berghofer, A., & Bolk-Weischedel, D. (2000). Healthy outcome under olanzapine treatment in a pregnant women. Pharmacopsychiatry, 33(2), 78–80.

    Article  CAS  PubMed  Google Scholar 

  33. Franssen, E. J. F., Meijs, V., Ettaher, F., et al. (2006). Citalopram serum and milk levels in mother and infant during lactation. Therapeutic Drug Monitoring, 28, 2–4.

    Article  CAS  PubMed  Google Scholar 

  34. Dei Cas, M., Casagni, E., Gambaro, V., et al. (2019). Determination of daptomycin in human plasma and breast milk by UPLC/MS-MS. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 1116, 38–43.

    Article  CAS  PubMed  Google Scholar 

  35. Eyal, S., Kim, J. D., Anderson, G. D., et al. (2010). Atenolol pharmacokinetics and excretion in breast milk during the first 6 to 8 months postpartum. Journal of Clinical Pharmacology, 50, 1301–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nitsun, M., Szoko, J. W., Saleh, H. J., et al. (2006). Pharmacokinetics of midazolam, propofol, and fentanyl transfer to human breast milk. Clinical Pharmacology and Therapeutics, 79, 549–557.

    Article  CAS  PubMed  Google Scholar 

  37. Naito, T., Kubono, N., Deguchi, S., et al. (2015). Amlodipine passage into breast milk in lactating women with pregnancy-induced hypertension and its estimation of infant risk for breastfeeding. Journal of Human Lactation, 31, 301–306.

    Article  PubMed  Google Scholar 

  38. O’Jalloran, S. J., Wong, A., & Jouce, D. A. (2016). A liquid chromatography-tandem mass spectrometry method for quantifying amisulpride in human plasma and breast milk, applied to measuring drug transfer to a fully breast-fed neonate. Therapeutic Drug Monitoring, 38, 493–498.

    Article  CAS  Google Scholar 

  39. Datta, P., Rewers-Felkins, K., Kallem, R. R., et al. (2017). Transfer of low dose aspirin into human Milk. Journal of Human Lactation, 33, 296–299.

    Article  PubMed  Google Scholar 

  40. Rowe, H. E., Felkins, K., Cooper, S. D., & Hale, T. W. (2014). Transfer of linezolid into breast milk. Journal of Human Lactation, 30, 410–412.

    Article  PubMed  Google Scholar 

  41. Silveira, G. O., Loddi, S., de Oliveira, C. D. R., et al. (2017). Headspace solid-phase microextraction and gas chromatography-mass spectrometry for determination of cannabinoids in human breast milk. Forensic Toxicology, 35, 125–132.

    Article  CAS  Google Scholar 

  42. Warth, B., Braun, D., Ezekiel, C. N., et al. (2016). Biomonitoring of mycotoxins in human breast milk: Current state and future perspectives. Chemical Research in Toxicology, 29, 1087–1097.

    Article  CAS  PubMed  Google Scholar 

  43. Iha, M. H., Barbosa, C. B., Heck, A. R., & Trucksess, M. W. (2014). Aflatoxin M1 and ochratoxin A in human milk in Ribeirão Preto-SP, Brazil. Food Control, 40, 310–313.

    Article  CAS  Google Scholar 

  44. Bogalho, F., Duarte, S., Cardoso, M., et al. (2018). Exposure assessment of Portuguese infants to aflatoxin M1 in breast milk and maternal social-demographical and food consumption determinants. Food Control, 90, 140–145.

    Article  CAS  Google Scholar 

  45. Kos, J., Lević, J., Duragić, O., et al. (2014). Occurrence and estimation of aflatoxin M1 exposure in milk in Serbia. Food Control, 38, 41–46.

    Article  CAS  Google Scholar 

  46. Gürbay, A., Sabuncuoǧlu, S. A., Girgin, G., et al. (2010). Exposure of newborns to aflatoxin M1 and B1 from mothers’ breast milk in Ankara, Turkey. Food and Chemical Toxicology, 48, 314–319.

    Article  PubMed  CAS  Google Scholar 

  47. Polychronaki, N., West, R. M., Turner, P. C., et al. (2007). A longitudinal assessment of aflatoxin M1 excretion in breast milk of selected Egyptian mothers. Food and Chemical Toxicology, 45, 1210–1215.

    Article  CAS  PubMed  Google Scholar 

  48. Renfrew, M. J., Hay, A. M. W., Shelton, N., et al. (2008). Assessing levels of contaminants in breast milk: Methodological issues and a framework for future research. Paediatric and Perinatal Epidemiology, 22, 72–86.

    Article  PubMed  Google Scholar 

  49. Needham, L. L., & Wang, R. Y. (2002). Analytic considerations for measuring environmental chemicals in breast milk. Environmental Health Perspectives, 110, A317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work is the result of the research project OPUS No. 2018/29/B/ST4/01681 funded by the National Science Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Gadzała-Kopciuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gadzała-Kopciuch, R., Pajewska-Szmyt, M. (2022). Human Milk and Xenobiotics. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_14

Download citation

Publish with us

Policies and ethics