Skip to main content

Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security

  • Conference paper
  • First Online:
Security, Privacy, and Applied Cryptography Engineering (SPACE 2021)

Abstract

This paper proposes a lightweight authenticated encryption (AE) scheme, called Light-OCB, which can be viewed as a lighter variant of the CAESAR winner OCB as well as a faster variant of the high profile NIST LWC competition submission LOCUS-AEAD. Light-OCB is structurally similar to LOCUS-AEAD and uses a nonce-based derived key that provides optimal security, and short-tweak tweakable blockcipher (tBC) for efficient domain separation. Light-OCB improves over LOCUS-AEAD by reducing the number of primitive calls, and thereby significantly optimizing the throughput. To establish our claim, we provide FPGA hardware implementation details and benchmark for Light-OCB against LOCUS-AEAD and several other well-known AEs. The implementation results depict that, when instantiated with the tBC TweGIFT64, Light-OCB achieves an extremely low hardware footprint - consuming only around 1128 LUTs and 307 slices (significantly lower than that for LOCUS-AEAD) while maintaining a throughput of 880 Mbps, which is almost twice that of LOCUS-AEAD. To the best of our knowledge, this figure is significantly better than all the known implementation results of other lightweight ciphers with parallel structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_22

    Chapter  Google Scholar 

  2. Authenticated Encryption FPGA Ranking. https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view

  3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small present - towards reaching the limit of lightweight encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

    Chapter  Google Scholar 

  4. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5

    Chapter  Google Scholar 

  5. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_25

    Chapter  Google Scholar 

  6. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  7. Bossuet, L., Datta, N., Mancillas-López, C., Nandi, M.: ELmD: a pipelineable authenticated encryption and its hardware implementation. IEEE Trans. Comput. 65(11), 3318–3331 (2016)

    Article  MathSciNet  Google Scholar 

  8. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html

  9. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Yu, S.: Elastic-tweak: a framework for short tweak tweakable block cipher. IACR Cryptology ePrint Archive, 2019:440 (2019)

    Google Scholar 

  10. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Yu.: INT-RUP secure lightweight parallel AE modes. IACR Trans. Symmetric Cryptol. 2019(4), 81–118 (2019)

    Google Scholar 

  11. Chakraborti, A., Datta, N., Nandi, M.: On the optimality of non-linear computations for symmetric key primitives. J. Math. Cryptol. 12(4), 241–259 (2018)

    Article  MathSciNet  Google Scholar 

  12. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_18

    Chapter  MATH  Google Scholar 

  13. Krovetz, T., Rogaway, P.: OCB(v1.1). Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/ocbv11.pdf

  14. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_3

    Chapter  Google Scholar 

  15. Minematsu, K.: AES-OTR v3.1. Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/aesotrv31.pdf

  16. Naito, Y.: Tweakable blockciphers for efficient authenticated encryptions with beyond the birthday-bound security. IACR Trans. Symmetric Cryptol. 2017(2), 1–26 (2017)

    Google Scholar 

  17. NIST. Lightweight cryptography. https://csrc.nist.gov/Projects/Lightweight-Cryptography

  18. National Centre of Excellence. Light-weight Cipher Design Challenge. https://www.dsci.in/ncoe-light-weight-cipher-design-challenge-2020/

  19. OMA-SpecWorks. Lightweight-M2M (2019). https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/

  20. Patarin, J.: The “coefficients H’’ technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_21

    Chapter  Google Scholar 

  21. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403 (2003)

    Article  Google Scholar 

  22. Vaudenay, S.: Decorrelation: a theory for block cipher security. J. Cryptol. 16(4), 249–286 (2003). https://doi.org/10.1007/s00145-003-0220-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M. (2022). Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security. In: Batina, L., Picek, S., Mondal, M. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2021. Lecture Notes in Computer Science(), vol 13162. Springer, Cham. https://doi.org/10.1007/978-3-030-95085-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95085-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95084-2

  • Online ISBN: 978-3-030-95085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics