Skip to main content

The World Big Challenges Faced by Nanoscience: Examples of How Integrated Science Can Save the World

  • Chapter
  • First Online:
Transdisciplinarity

Part of the book series: Integrated Science ((IS,volume 5))

  • 1003 Accesses

Summary

Our world has plenty of challenges, concerns, as well as human and environmental problems. One cannot solve most of them, but constructive human cooperation is essential. Science and engineering can also contribute, applying a broad and multidisciplinary approach. Nanotechnology deals with the creation and manipulation of matter on a scale ranging from 1 to 100 nm. This science field that emerged in the late’50 s has revolutionized the comprehension of matter and opened the door to a plethora of novel, unprecedented, and intriguing applications and solutions to current problems. This chapter aims to overview the most urgent world challenges of our era, potentially solved by employing nanotechnologies. The idea is to trace a direction to which all from scientists, professionals, and experts, to industrial people, policymakers, young people, and students can recognize with their professionality and create a common conscience and integrity on where we are and where we are going.

Some of the most urgent problems of our modern world can be solved by employing nanotechnologies and all related nanomaterials involving sciences.

The code of this chapter is 01001110 01100001 01101110 01101111 01110011 01100011 01101001 01100101 01101110 01100011 01100101.

Arranged one way, atoms make up soil, air, and water arranged another, they make up ripe strawberries. Arranged one way, they make up homes and fresh air, arranged another, they make up ash and smoke.”

Kim Eric Drexler

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahar H (2019) Tracking power—solar PV. In

    Google Scholar 

  2. Green MA, Hishikawa Y, Dunlop ED, et al (2019) Solar cell efficiency tables (Version 53). 27:3–12

    Google Scholar 

  3. Gangopadhyay U, Jana S, Das S (2013) State of art of solar photovoltaic technology. Conf Papers Energy 2013:764132

    Google Scholar 

  4. Pse (2020) PV production by technology—percentage of global annual production. In: Frauhofer (ed), online, p https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

  5. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  6. Le VH, Nguyen TH, Nguyen HH et al (2020) Fabrication and electrochemical behavior investigation of a Pt-loaded reduced graphene oxide composite (Pt@rGO) as a high-performance cathode for dye-sensitized solar cells. Int J Photoenergy 2020:8927124

    Article  Google Scholar 

  7. Baruah J, Narayan J (2019) Mini review quantum dot sensitized solar cell: introduction

    Google Scholar 

  8. Wang ZL (2020) Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. 10:2000137

    Google Scholar 

  9. Pu X, Li L, Song H, et al (2015) A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. 27:2472–2478

    Google Scholar 

  10. Rivera VF, Auras F, Motto P, et al (2013) Length-dependent charge generation from vertical arrays of high-aspect-ratio ZnO nanowires. Chem—Eur J n/a-n/a

    Google Scholar 

  11. Stassi S, Cauda V, Ottone C et al (2015) Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy 13:474–481

    Article  CAS  Google Scholar 

  12. Chiolerio A, Lombardi M, Guerriero A et al (2013) Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites. J Mater Sci 48:6943–6951

    Article  CAS  Google Scholar 

  13. Cauda V, Stassi S, Bejtka K et al (2013) Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl Mater Interfaces 5:6430–6437

    Article  CAS  Google Scholar 

  14. Cauda V, Torre B, Falqui A et al (2012) Confinement in oriented mesopores induces piezoelectric behavior of polymeric nanowires. Chem Mater 24:4215–4221

    Article  CAS  Google Scholar 

  15. Cauda V, Stassi S, Lamberti A et al (2015) Leveraging ZnO morphologies in piezoelectric composites for mechanical energy harvesting. Nano Energy 18:212–221

    Article  CAS  Google Scholar 

  16. Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338

    Article  CAS  Google Scholar 

  17. Zhao Q, Zhu Q, Miao J, et al (2019) Flexible 3D porous MXene foam for high-performance lithium-ion batteries. 15:1904293

    Google Scholar 

  18. Yang P, Gao X, Tian X et al (2020) Upgrading traditional organic electrolytes toward future lithium metal batteries: a hierarchical nano-SiO2-supported gel polymer electrolyte. ACS Energy Lett 5:1681–1688

    Article  CAS  Google Scholar 

  19. Cheng Y, Xiao X, Pan K et al (2020) Development and application of self-healing materials in smart batteries and supercapacitors. Chem Eng J 380:122565

    Article  CAS  Google Scholar 

  20. He H, Fu Y, Zhao T et al (2017) All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics. Nano Energy 39:590–600

    Article  CAS  Google Scholar 

  21. Zhao K, Wang Y, Han L et al (2019) Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett 11:19

    Article  CAS  Google Scholar 

  22. Canavese G, Stassi S, Fallauto C et al (2014) Real-time pedobarography analysis by piezoresistive wearable insole. Sens Lett 12:1427–1432

    Article  Google Scholar 

  23. Canavese G, Stassi S, Fallauto C et al (2014) Stretchable and wearable piezoresistive insole for continuous pressure monitoring. Key Eng Mater 605:474–477

    Article  Google Scholar 

  24. Someya T (2013) Building bionic skin. IEEE Spectr 50:50–56

    Article  Google Scholar 

  25. Yokota T, Zalar P, Kaltenbrunner M, et al (2016) Ultraflexible organic photonic skin. 2:e1501856

    Google Scholar 

  26. Lee B, Oh J-Y, Cho H et al (2020) Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat Commun 11:663

    Article  CAS  Google Scholar 

  27. Ma L, Dong X, Chen M et al (2017) Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes 7:16

    Article  Google Scholar 

  28. Surwade SP, Smirnov SN, Vlassiouk IV et al (2015) Water desalination using nanoporous single-layer graphene. Nat Nanotechnol 10:459–464

    Article  CAS  Google Scholar 

  29. Fischbein MD, Drndić M (2008) Electron beam nanosculpting of suspended graphene sheets. 93:113107

    Google Scholar 

  30. O’hern SC, Stewart CA, Boutilier MSH, et al (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–10138

    Google Scholar 

  31. O’hern SC, Jang D, Bose S, et al (2015) Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett 15:3254–3260

    Google Scholar 

  32. Buelke C, Alshami A, Casler J et al (2018) Graphene oxide membranes for enhancing water purification in terrestrial and space-born applications: state of the art. Desalination 448:113–132

    Article  CAS  Google Scholar 

  33. Fathizadeh M, Xu WL, Zhou F, et al (2017) Graphene oxide: a novel 2-dimensional material in membrane separation for water purification. 4:1600918

    Google Scholar 

  34. Hong X, Wen J, Xiong X et al (2016) Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res Int 23:4489–4497

    Article  CAS  Google Scholar 

  35. Raza MA, Kanwal Z, Rauf A, et al (2016) S. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6:74

    Google Scholar 

  36. Garino N, Sanvitale P, Dumontel B et al (2019) Zinc oxide nanocrystals as a nanoantibiotic and osteoinductive agent. RSC Adv 9:11312–11321

    Article  CAS  Google Scholar 

  37. Damodaran VB, Bhatnagar D, Leszczak V et al (2015) Titania nanostructures: a biomedical perspective. RSC Adv 5:37149–37171

    Article  CAS  Google Scholar 

  38. Laurenti M, Garino N, Canavese G et al (2020) Piezo- and photocatalytic activity of ferroelectric ZnO: Sb thin films for the efficient degradation of rhodamine-β dye pollutant. ACS Appl Mater Interfaces 12:25798–25808

    Article  CAS  Google Scholar 

  39. Cauda V, Schlossbauer A, Kecht J et al (2009) Multiple core−shell functionalized colloidal mesoporous silica nanoparticles. J Am Chem Soc 131:11361–11370

    Article  CAS  Google Scholar 

  40. Guerra FD, Attia MF, Whitehead DC et al (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23:1760

    Article  Google Scholar 

  41. Huang HY, Yang RT, Chinn D et al (2003) Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind Eng Chem Res 42:2427–2433

    Article  CAS  Google Scholar 

  42. Mandal L, Yang KR, Motapothula MR et al (2018) Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl Mater Interfaces 10:8574–8584

    Article  CAS  Google Scholar 

  43. Yunus IS, Harwin KA et al (2012) Nanotechnologies in water and air pollution treatment. Environ Technol Rev 1:136–148

    Article  CAS  Google Scholar 

  44. Tungittiplakorn W, Lion LW, Cohen C et al (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610

    Article  CAS  Google Scholar 

  45. Probst C, Schneider S, Loskill P (2018) High-throughput organ-on-a-chip systems: current status and remaining challenges. Curr Opin Biomed Eng 6:33–41

    Article  Google Scholar 

  46. Renovacare https://www.renovacareinc.com/technology/. In

  47. Jiang W, Li M, Chen Z et al (2016) Cell-laden microfluidic microgels for tissue regeneration. Lab Chip 16:4482–4506

    Article  CAS  Google Scholar 

  48. Chen G, Kawazoe N (2018) Biomimetic extracellular matrices and scaffolds prepared from cultured cells. In: Springer (ed) Cutting-edge enabling technologies for regenerative medicine. Advances in experimental medicine and biology. Singapore

    Google Scholar 

  49. Dvir T, Timko BP, Kohane DS et al (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22

    Article  CAS  Google Scholar 

  50. Cauda V, Fiorilli S, Onida B et al (2008) SBA-15 ordered mesoporous silica inside a bioactive glass–ceramic scaffold for local drug delivery. J Mater Sci: Mater Med 19:3303–3310

    CAS  Google Scholar 

  51. Mortera R, Onida B, Fiorilli S et al (2008) Synthesis and characterization of MCM-41 spheres inside bioactive glass–ceramic scaffold. Chem Eng J 137:54–61

    Article  CAS  Google Scholar 

  52. Miller MA (2017) Nanotransfection brings progress that’s more than skin-deep. 9:eaao4216

    Google Scholar 

  53. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40:277–283

    Google Scholar 

  54. Leaper D (2012) Appropriate use of silver dressings in wounds: International consensus document. 9:461–464

    Google Scholar 

  55. Arya G, Sharma N, Mankamna R, et al (2019) Antimicrobial silver nanoparticles: future of nanomaterials. In: Springer (ed) Microbial nanobionics. Cham

    Google Scholar 

  56. Racca L, Canta M, Dumontel B, et al (2018) Zinc oxide nanostructures in biomedicine. In: Ciofani G (ed) Smart nanoparticles for biomedicine. Elsevier, pp 171–187

    Google Scholar 

  57. Webster TJ (2006) Nanomedicine: what’s in a definition? Int J Nanomedicine 1:115–116

    Article  Google Scholar 

  58. Liu Y, Sun D, Fan Q et al (2020) The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Res 13:564–569

    Article  Google Scholar 

  59. Cauda V, Engelke H, Sauer A et al (2010) Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake. Nano Lett 10:2484–2492

    Article  CAS  Google Scholar 

  60. Dumontel B, Susa F, Limongi T et al (2019) ZnO nanocrystals shuttled by extracellular vesicles as effective Trojan nano-horses against cancer cells. Nanomedicine 14:2815–2833

    Article  CAS  Google Scholar 

  61. Barui S, Cauda V (2020) Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy. Pharmaceutics 12

    Google Scholar 

  62. Bobo D, Robinson KJ, Islam J et al (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387

    Article  CAS  Google Scholar 

  63. Racca L, Cauda V (2020) Remotely activated nanoparticles for anticancer therapy. Nano-Micro Lett 13:11

    Article  Google Scholar 

  64. Weissig V, Pettinger T, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373

    Article  CAS  Google Scholar 

  65. Lim E-K, Kim T, Paik S et al (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394

    Article  CAS  Google Scholar 

  66. Gruber FP, Hartung T (2004) Alternatives to animal experimentation in basic research. Altex 21:3–31

    Article  Google Scholar 

  67. Canta M, Cauda V (2020) The investigation of the parameters affecting the ZnO nanoparticle cytotoxicity behaviour: a tutorial review. Biomater Sci 8:6157–6174

    Article  CAS  Google Scholar 

  68. Lin HK, Zheng S, Williams AJ, et al (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. 16:5011–5018

    Google Scholar 

  69. Huang Q, Wang Y, Chen X et al (2018) Nanotechnology-based strategies for early cancer diagnosis using circulating tumor cells as a liquid biopsy. Nanotheranostics 2:21–41

    Article  Google Scholar 

  70. Jan YJ, Chen J-F, Zhu Y et al (2018) NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev 125:78–93

    Article  CAS  Google Scholar 

  71. Andree KC, Van Dalum G, Terstappen LWMM (2016) Challenges in circulating tumor cell detection by the cell search system. Mol Oncol 10:395–407

    Article  CAS  Google Scholar 

  72. Ancona A, Troia A, Garino N et al (2020) Leveraging re-chargeable nanobubbles on amine-functionalized ZnO nanocrystals for sustained ultrasound cavitation towards echographic imaging. Ultrason Sonochem 67:105132

    Article  CAS  Google Scholar 

  73. Ramos-Gomes F, Bode J, Sukhanova A et al (2018) Single- and two-photon imaging of human micrometastases and disseminated tumour cells with conjugates of nanobodies and quantum dots. Sci Rep 8:4595

    Article  Google Scholar 

  74. Bonazza A, Messina P, Sabbioni C et al (2009) Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci Total Environ 407:2039–2050

    Article  CAS  Google Scholar 

  75. Grossi CM, Murray M (1999) Characteristics of carbonate building stones that influence the dry deposition of acidic gases. Constr Build Mater 13:101–108

    Article  Google Scholar 

  76. Baglioni P, Chelazzi D, Giorgi R et al (2014) Commercial Ca(OH)2 nanoparticles for the consolidation of immovable works of art. Appl Phys A 114:723–732

    Article  CAS  Google Scholar 

  77. Licciulli A, Calia A, Lettieri M et al (2011) Photocatalytic TiO2 coatings on limestone. J Sol-Gel Sci Technol 60:437–444

    Article  CAS  Google Scholar 

  78. Mosquera MJ, De Los Santos DM, Montes A et al (2008) New nanomaterials for consolidating stone. Langmuir 24:2772–2778

    Article  CAS  Google Scholar 

  79. De Ferri L, Lottici PP, Lorenzi A et al (2011) Study of silica nanoparticles—polysiloxane hydrophobic treatments for stone-based monument protection. J Cult Herit 12:356–363

    Article  Google Scholar 

  80. Baglioni P, Berti D, Bonini M et al (2014) Micelle, microemulsions, and gels for the conservation of cultural heritage. Adv Coll Interface Sci 205:361–371

    Article  CAS  Google Scholar 

  81. Bonini M, Lenz S, Giorgi R et al (2007) Nanomagnetic sponges for the cleaning of works of art. Langmuir 23:8681–8685

    Article  CAS  Google Scholar 

  82. Kistler SS (1932) Coherent expanded-aerogels. J Phys Chem 36:52–64

    Article  CAS  Google Scholar 

  83. Burchell MJ, SaJ F, Foster NJ et al (2009) Hypervelocity capture of particles in aerogel: dependence on aerogel properties. Planet Space Sci 57:58–70

    Article  Google Scholar 

  84. Bheekhun N, Abu Talib AR, Hassan MR (2013) Aerogels in aerospace: an overview. Advan Mater Sci Eng 2013:406065

    Google Scholar 

  85. Gohardani O, Elola MC, Elizetxea C (2014) Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences. Prog Aerosp Sci 70:42–68

    Article  Google Scholar 

  86. Ahmad H, Tariq A, Shehzad A, et al (2019) Stealth technology: methods and composite materials—a review. 40:4457–4472

    Google Scholar 

  87. Eseev M, Goshev A, Kapustin S et al (2019) Creation of superhydrophobic coatings based on MWCNTs Xerogel. Nanomaterials 9:1584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Cauda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carofiglio, M., Laurenti, M., Cauda, V. (2022). The World Big Challenges Faced by Nanoscience: Examples of How Integrated Science Can Save the World. In: Rezaei, N. (eds) Transdisciplinarity. Integrated Science, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-94651-7_8

Download citation

Publish with us

Policies and ethics