Skip to main content

The Utility of Twins for Epigenetic Analysis

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

Twin studies have played an important role in our understanding of individual variation for over a century. The strength of these lies in the capacity to almost perfectly control for inter-individual genetic variation through the study of monozygotic (MZ) twin pairs. Despite their genetic identity, MZ twins usually show phenotypic variability, often solely ascribed to non-shared environmental exposures. Given that epigenetic mechanisms are widely believed to be the mediators of the influence of environmental factors on the underlying genome, it is not surprising that study of twins in epigenetic research is an important approach to help unravel the complexities associated with gene: environment interactions in human development and disease. In addition, the strategic use of twins in epigenetic studies has revealed the importance of genetic factors and both in utero and postnatal environments to the establishment and maintenance of the human epigenome. However, a note of caution is warranted given emerging evidence for epigenetic variation as an inherent feature of MZ twinning and the potential for MZ twins to show genetic variability. Irrespective of this, twin studies are beginning to reveal evidence linking epigenetic disruption to disease-associated risk in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3′UTR:

Non-protein coding 3′ untranslated region of RNA transcript

5MeC:

5-methylcytosine

AIMS:

Amplification of inter-methylated sites

ANOVA:

Analysis of variance

CBMC:

Cord blood mononuclear cells

CGI:

CpG island region (enriched for CpG dinucleotides)

COMT:

Catechol-O-methyltransferase

DC:

Dichorionic (two placentas)

DM:

Dermatomyositis

DMR:

Differentially methylated regions

DNA:

Deoxyribonucleic acid

DRD2:

Dopaminergic receptor D2

DZ:

Dizygotic

EEA:

Equal environments assumption

HUVEC:

Human umbilical vein endothelial cells

ICC:

Intraclass correlation

MC:

Monochorionic

MSRDA:

Methylation-sensitive representational difference analysis

MZ:

Monozygotic

PPIEL:

Peptidylprolyl isomerase E-like

RA:

Rheumatoid arthritis

RNA:

Ribonucleic acid

RRBS:

Reduced representation bisulphite sequencing

SLE:

Systemic lupus erythematosus

SMS:

Spermine synthase

References

  1. Hasler R et al (2009) Genetic control of global gene expression levels in the intestinal mucosa: a human twin study. Physiol Genomics 38(1):73–79

    Article  CAS  PubMed  Google Scholar 

  2. Sharma K (2005) Genetic epidemiology of epilepsy: a twin study. Neurol India 53(1):93–98

    Article  PubMed  Google Scholar 

  3. Tan Q et al (2005) Genetic dissection of gene expression observed in whole blood samples of elderly Danish twins. Hum Genet 117(2–3):267–274

    Article  PubMed  Google Scholar 

  4. Gordon L et al (2012) Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res 22(8):1395–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gordon L et al (2011) Clues to the effect of intrauterine milieu on gene expression from a study of two tissues from neonatal monozygotic twins. Epigenetics 6(5):579–592

    Article  PubMed  Google Scholar 

  6. Gartner K (1990) A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim 24(1):71–77

    Article  CAS  PubMed  Google Scholar 

  7. Kerkel K et al (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40(7):904–908

    Article  CAS  PubMed  Google Scholar 

  8. Schalkwyk LC et al (2010) Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 86(2):196–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fuke C et al (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68(Pt 3):196–204

    Article  CAS  PubMed  Google Scholar 

  10. Fraga MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ollikainen M et al (2010) DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet 19(21):4176–4188

    Article  CAS  PubMed  Google Scholar 

  12. Tan Q et al (2015) Twin methodology in epigenetic studies. J Exp Biol 218(Pt 1):134–139

    Article  PubMed  Google Scholar 

  13. Boomsma D, Busjahn A, Peltonen L (2002) Classical twin studies and beyond. Nat Rev Genet 3(11):872–882

    Article  CAS  PubMed  Google Scholar 

  14. Bell JT, Spector TD (2011) A twin approach to unraveling epigenetics. Trends Genet 27:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heijmans BT et al (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 16(5):547–554

    Article  CAS  PubMed  Google Scholar 

  16. Kaminsky ZA et al (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41(2):240–245

    Article  CAS  PubMed  Google Scholar 

  17. McRae AF et al (2014) Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol 15(5):R73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Villicana S, Bell JT (2021) Genetic impacts on DNA methylation: research findings and future perspectives. Genome Biol 22(1):127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Min JL et al (2021) Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet 53(9):1311–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Dongen J et al (2021) Identical twins carry a persistent epigenetic signature of early genome programming. Nat Commun 12(1):5618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wong CC et al (2010) A longitudinal study of epigenetic variation in twins. Epigenetics 5(6):516–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spector TD (2000) Advances in twin and sib-pair analysis. Greenwich Medical Media

    Google Scholar 

  23. Martino D et al (2013) Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol 14(5):R42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levesque ML et al (2014) Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics 9(10):1410–1421

    Article  PubMed  PubMed Central  Google Scholar 

  25. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    Article  PubMed  PubMed Central  Google Scholar 

  26. Knight AK et al (2016) An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol 17(1):206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee Y et al (2019) Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. Aging (Albany NY) 11(12):4238–4253

    Article  CAS  Google Scholar 

  28. Girchenko P et al (2017) Associations between maternal risk factors of adverse pregnancy and birth outcomes and the offspring epigenetic clock of gestational age at birth. Clin Epigenetics 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  29. McCartney DL et al (2021) Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol 22(1):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reynolds CA et al (2020) A decade of epigenetic change in aging twins: genetic and environmental contributions to longitudinal DNA methylation. Aging Cell 19(8):e13197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jylhava J et al (2019) Longitudinal changes in the genetic and environmental influences on the epigenetic clocks across old age: evidence from two twin cohorts. EBioMedicine 40:710–716

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fohr T et al (2021) Does the epigenetic clock GrimAge predict mortality independent of genetic influences: an 18 year follow-up study in older female twin pairs. Clin Epigenetics 13(1):128

    Article  CAS  PubMed  Google Scholar 

  33. Li S et al (2020) Genetic and environmental causes of variation in epigenetic aging across the lifespan. Clin Epigenetics 12(1):158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zwijnenburg PJ, Meijers-Heijboer H, Boomsma DI (2010) Identical but not the same: the value of discordant monozygotic twins in genetic research. Am J Med Genet B Neuropsychiatr Genet 153B(6):1134–1149

    CAS  PubMed  Google Scholar 

  35. Sakuntabhai A et al (1999) Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 21(3):271–277

    Article  CAS  PubMed  Google Scholar 

  36. Robertson SP et al (2006) Postzygotic mutation and germline mosaicism in the otopalatodigital syndrome spectrum disorders. Eur J Hum Genet 14(5):549–554

    Article  CAS  PubMed  Google Scholar 

  37. Kondo S et al (2002) Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet 32(2):285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith AC et al (2006) New chromosome 11p15 epigenotypes identified in male monozygotic twins with Beckwith-Wiedemann syndrome. Cytogenet Genome Res 113(1–4):313–317

    Article  CAS  PubMed  Google Scholar 

  39. Helderman-van den Enden AT et al (1999) Monozygotic twin brothers with the fragile X syndrome: different CGG repeats and different mental capacities. J Med Genet 36(3):253–257

    CAS  PubMed  Google Scholar 

  40. Kruyer H et al (1994) Fragile X syndrome and the (CGG)n mutation: two families with discordant MZ twins. Am J Hum Genet 54(3):437–442

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonilla E et al (1990) Partial dystrophin deficiency in monozygous twin carriers of the Duchenne gene discordant for clinical myopathy. Neurology 40(8):1267–1270

    Article  CAS  PubMed  Google Scholar 

  42. Biousse V et al (1997) De novo 14484 mitochondrial DNA mutation in monozygotic twins discordant for Leber’s hereditary optic neuropathy. Neurology 49(4):1136–1138

    Article  CAS  PubMed  Google Scholar 

  43. Blakely EL et al (2004) Mitochondrial DNA deletion in “identical” twin brothers. J Med Genet 41(2):e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bruder CE et al (2008) Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82(3):763–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bakaysa SL et al (2007) Telomere length predicts survival independent of genetic influences. Aging Cell 6(6):769–774

    Article  CAS  PubMed  Google Scholar 

  46. Slagboom PE, Droog S, Boomsma DI (1994) Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet 55(5):876–882

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jonsson H et al (2021) Differences between germline genomes of monozygotic twins. Nat Genet 53(1):27–34

    Article  CAS  PubMed  Google Scholar 

  48. Petronis A et al (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29(1):169–178

    Article  PubMed  Google Scholar 

  49. Mill J et al (2006) Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene. Am J Med Genet B Neuropsychiatr Genet 141B(4):421–425

    Article  CAS  PubMed  Google Scholar 

  50. Mitchell MM et al (2011) Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 6(1):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weksberg R et al (2002) Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 11(11):1317–1325

    Article  CAS  PubMed  Google Scholar 

  52. Yamazawa K et al (2008) Monozygotic female twins discordant for silver-Russell syndrome and hypomethylation of the H19-DMR. J Hum Genet 53(10):950–955

    Article  PubMed  Google Scholar 

  53. Oates NA et al (2006) Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am J Hum Genet 79(1):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mastroeni D et al (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 4(8):e6617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Souren NY et al (2011) DNA methylation variability at growth-related imprints does not contribute to overweight in monozygotic twins discordant for BMI. Obesity (Silver Spring) 19:1519–1522

    Article  CAS  Google Scholar 

  56. Javierre BM et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20(2):170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baranzini SE et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464(7293):1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuratomi G et al (2008) Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry 13(4):429–441

    Article  CAS  PubMed  Google Scholar 

  59. Kaminsky Z et al (2008) Epigenetics of personality traits: an illustrative study of identical twins discordant for risk-taking behavior. Twin Res Hum Genet 11(1):1–11

    Article  PubMed  Google Scholar 

  60. Yuan W et al (2014) An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins. Nat Commun 5:5719

    Article  CAS  PubMed  Google Scholar 

  61. Carry PM et al (2021) Severity of idiopathic scoliosis is associated with differential methylation: an epigenome-wide association study of monozygotic twins with idiopathic scoliosis. Genes (Basel) 12(8):1191

    Article  CAS  Google Scholar 

  62. Wang W et al (2021) Genome-wide DNA methylation and gene expression analyses in monozygotic twins identify potential biomarkers of depression. Transl Psychiatry 11(1):416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paul DS et al (2016) Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat Commun 7:13555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nilsson E et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63(9):2962–2976

    Article  PubMed  Google Scholar 

  65. Wei M et al (2021) Monozygotic twins discordant for immunoglobulin a nephropathy display differences in DNA methylation and gene expression. Kidney Dis (Basel) 7(3):200–209

    Article  Google Scholar 

  66. Young JI et al (2021) DNA methylation variation is identified in monozygotic twins discordant for non-syndromic cleft lip and palate. Front Cell Dev Biol 9:656865

    Article  PubMed  PubMed Central  Google Scholar 

  67. Grunert M et al (2020) The needle in the haystack-searching for genetic and epigenetic differences in monozygotic twins discordant for tetralogy of Fallot. J Cardiovasc Dev Dis 7(4):55

    Article  CAS  PubMed Central  Google Scholar 

  68. Roberson-Nay R et al (2020) An epigenome-wide association study of early-onset major depression in monozygotic twins. Transl Psychiatry 10(1):301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu Y et al (2019) Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: a monozygotic discordant twin study. Transl Psychiatry 9(1):215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang S et al (2019) Genome-wide DNA methylation analysis reveals epigenetic pattern of SH2B1 in Chinese monozygotic twins discordant for autism Spectrum disorder. Front Neurosci 13:712

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mohandas N et al (2019) Evidence for type-specific DNA methylation patterns in epilepsy: a discordant monozygotic twin approach. Epigenomics 11(8):951–968

    Article  CAS  PubMed  Google Scholar 

  72. Souren NY et al (2019) DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis. Nat Commun 10(1):2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Webster AP et al (2018) Increased DNA methylation variability in rheumatoid arthritis-discordant monozygotic twins. Genome Med 10(1):64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Murphy TM et al (2015) Methylomic markers of persistent childhood asthma: a longitudinal study of asthma-discordant monozygotic twins. Clin Epigenetics 7:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ollikainen M et al (2015) Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clin Epigenetics 7:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cobos I et al (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8(8):1059–1068

    Article  CAS  PubMed  Google Scholar 

  77. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26(7):873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bennett CM, Boye E, Neufeld EJ (2008) Female monozygotic twins discordant for hemophilia a due to nonrandom X-chromosome inactivation. Am J Hematol 83(10):778–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Willemsen R et al (2000) Twin sisters, monozygotic with the fragile X mutation, but with a different phenotype. J Med Genet 37(8):603–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zneimer SM, Schneider NR, Richards CS (1993) In situ hybridization shows direct evidence of skewed X inactivation in one of monozygotic twin females manifesting Duchenne muscular dystrophy. Am J Med Genet 45(5):601–605

    Article  CAS  PubMed  Google Scholar 

  81. Shur N (2009) The genetics of twinning: from splitting eggs to breaking paradigms. Am J Med Genet C Semin Med Genet 151C(2):105–109

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Saffery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saffery, R., Bell, J.T. (2022). The Utility of Twins for Epigenetic Analysis. In: Michels, K.B. (eds) Epigenetic Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-94475-9_9

Download citation

Publish with us

Policies and ethics