Skip to main content

Sierra Nevada, a Mediterranean Biodiversity Super Hotspot

  • Chapter
  • First Online:
The Landscape of the Sierra Nevada

Abstract

The Sierra Nevada massif is a hotspot nested within a biodiversity hotspot in the Western Mediterranean (the Baetic-Rifian range, divided by the Strait of Gibraltar), which in turn is found within one the hottest spots in the World, the Mediterranean Basin. The geographic, geomorphological, geological and climatic history of Sierra Nevada places it at a unique biogeographical crossroads, which explains the high biodiversity levels found there. Here, we review the available literature on the multiple dimensions of biodiversity in Sierra Nevada in different systematic groups. Thus, we go beyond the classical account of endemism as a form of rarity accounting for biodiversity to consider evolutionary and ecological rarities. We focus on successively finer scales, from floristic and faunistic accounts of diversity to community diversity, and then to populations, including phylogenetic, phylogeographic and population genetics information. We also consider biological interactions—mostly mutualisms—that are a fundamental part of biodiversity due to their key role in maintaining species diversity. Finally, we provide some insight into the fate of this biodiversity given the incidence of global change drivers, which may have particularly pernicious consequences in mountainous ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeli T, Vamosi JC, Orsenigo S (2018) The importance of marginal population hotspots of cold-adapted species for research on climate change and conservation. J Biogeogr 45:977–985

    Article  Google Scholar 

  • Abellán P, Sánchez-Fernández D, Picazo F et al (2013) Preserving the evolutionary history of freshwater biota in Iberian National Parks. Biol Conserv 162:116–126

    Article  Google Scholar 

  • Ahmadzadeh F, Fleck M, Carretero MA et al (2016) Separate histories in both sides of the Mediterranean: phylogeny and niche evolution of ocellated lizards. J Biogeogr 43:122–1253

    Article  Google Scholar 

  • Alcántara JM, Jaime R, Bastida JM et al (2014) The role of genetic constraints on the diversification of Iberian taxa of the genus Aquilegia (Ranunculaceae). Biol J Linn Soc 11:252–261

    Article  Google Scholar 

  • Alía R, Moro-Serrano J, Notivol E (2001) Genetic variability of Scots pine (Pinus sylvestris) provenances in Spain: growth traits and survival. Silva Fenn 35:27–38

    Article  Google Scholar 

  • Almodóvar A, Nicola GG, Leal S et al (2010) Análisis genético de las poblaciones de Trucha Común Salmo trutta en la Comunidad Autónoma de Andalucía. Environmental Council of the Andalusian Government, Sevilla, Spain

    Google Scholar 

  • Arroyo J, Marañón T (1990) Community ecology and distributional spectra of Mediterranean shrublands and heathlands in Southern Spain. J Biogeogr 173:163–176

    Article  Google Scholar 

  • Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97

    Article  Google Scholar 

  • Azor JS, Santos X, Pleguezuelos JM (2015) Conifer-plantation thinning restores reptile biodiversity in Mediterranean landscapes. For Ecol Manag 354:185–189

    Article  Google Scholar 

  • Barbadillo LJ, García-París M, Sanchiz B (1997) Orígenes y relaciones evolutivas de la herpetofauna ibérica. In: JM Pleguezuelos (ed) Distribución y biogeografía de los anfibios y reptiles en España y Portugal. Monografías de Herpetología 2:47–100

    Google Scholar 

  • Bascompte J, Jordano P (2013) Mutualistic networks. Princeton University Press, Princeton

    Book  Google Scholar 

  • Benadi G, Blüthgen N, Hovestadt T et al (2013) When can plant-pollinator interactions promote plant diversity? Am Nat 182:131–146

    Article  Google Scholar 

  • Bernatchez L (2001) The evolutionary history of brown trout (Salmo trutta, L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55:351–379

    Article  Google Scholar 

  • Blanca G, Cueto M, Martínez-Lirola MJ et al (1998) Threatened vascular flora of Sierra Nevada (southern Spain). Biol Conserv 85:269–285

    Article  Google Scholar 

  • Blanca G, Cabezudo B, Cueto M et al (eds) (2009) Flora Vascular de Andalucía Oriental, 4 vols. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla

    Google Scholar 

  • Blanco-Pastor JL, Fernández-Mazuecos M, Vargas P (2013) Past and future demographic dynamics of alpine species: limited genetic consequences despite dramatic range contraction in a plant from the Spanish Sierra Nevada. Mol Ecol 22:4177–4195

    Article  Google Scholar 

  • Blanco-Pastor JL, Fernández-Mazuecos M, Coello AJ et al (2019) Topography explains the distribution of genetic diversity in one of the most fragile European hotspots. Divers Distrib 25:74–89

    Article  Google Scholar 

  • Booth-Rea G, Ranero CR, Grevemeyer I (2018) The Alboran volcanic-arc modulated the Messinian faunal exchange and salinity crisis. Sci Rep 8:1–14

    Article  Google Scholar 

  • Buira A, Aedo C, Medina L (2017) Spatial patterns of the Iberian and Balearic endemic vascular flora. Biodivers Conserv 26:479–508

    Article  Google Scholar 

  • Buira A, Fernández-Mazuecos M, Aedo C et al (2021) The contribution of the edaphic factor as a driver of recent plant diversification in a Mediterranean biodiversity hotspot. J Ecol 109:987–999

    Article  Google Scholar 

  • Burkle LA, Alarcón R (2011) The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538

    Article  Google Scholar 

  • Busack SD (1986) Biogeographic analysis of the herpetofauna separated by the formation of the Strait of Gibraltar. Natl Geogr Res 2:17–36

    Google Scholar 

  • Busack SD, Lawson R, Arjo WM (2005) Mitochondrial DNA, allozymes, morphology and historical biogeography in the Podarcis vaucheri (Lacertidae) species complex. Amphibia-Reptilia 26:239–256

    Article  Google Scholar 

  • Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, New York

    Google Scholar 

  • Cañadas EM, Fenu G, Peñas J et al (2014) Hotspots within hotspots: endemic plant richness, environmental drivers, and implications for conservation. Biol Conserv 170:282–329

    Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA et al (2004) Benefits of using shrubs as nurse plants for reforestation in Mediterranean mountains: a 4-year study. Restor Ecol 12:352–358

    Article  Google Scholar 

  • Cheikh Albassatneh M, Escudero M, Monnet AC et al (2021) Spatial patterns of genus-level phylogenetic endemism in the tree flora of Mediterranean Europe. Divers Distrib 27:913–928

    Article  Google Scholar 

  • Cobo-Díaz JF, Martínez-Hidalgo P, Fernández-González AJ et al (2014) The endemic Genista versicolor from Sierra Nevada National Park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Syst Appl Microbiol 37:177–185

    Article  Google Scholar 

  • Cobo-Díaz JF, Fernández-González AJ, Villadas PJ et al (2017) Taxonomic and functional diversity of a Quercus pyrenaica willd. rhizospheric microbiome in the Mediterranean mountains. Forests 8:390

    Google Scholar 

  • Cueto M, Melendo M, Giménez E et al (2018) First updated checklist of the vascular flora of Andalusia (S of Spain), one of the main biodiversity centres in the Mediterranean Basin. Phytotaxa 339:1–95

    Article  Google Scholar 

  • Davies TJ (2021) Ecophylogenetics redux. Ecol Lett 24:1073–1088

    Article  Google Scholar 

  • Dias G, Beltrán JF, Tejedo M et al (2015) Limited gene flow and high genetic diversity in the threatened Betic midwife toad (Alytes dickhilleni): evolutionary and conservation implications. Conserv Genet 16:459–476

    Google Scholar 

  • Dincă V, Dapporto L, Vila R (2011) A combined genetic-morphometric analysis unravels the complex biogeographical history of Polyommatus icarus and Polyommatus celina Common Blue butterflies. Mol Ecol 20:3921–3935

    Article  Google Scholar 

  • Dupont YL, Hansen DM, Olesen JM (2003) Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26:301–310

    Article  Google Scholar 

  • Elberling H, Olesen J (1999) The structure of a high altitude plant-flower visitor system: the dominance of flies. Ecography 22:314–323

    Article  Google Scholar 

  • Favarger C, Contandriopoulos J (1961) Essai sur l’endémisme. Travaux de l’Institut de Botanique de l’Université de Neuchâtel 1961. pp 384–408

    Google Scholar 

  • Finn DS, Zamora-Muñoz C, Múrria C et al (2014) Evidence from recently deglaciated mountain ranges that Baetis alpinus (Ephemeroptera) could lose significant genetic diversity as alpine glaciers disappear. Freshw Sci 33:207–216

    Google Scholar 

  • García D (2001) Effects of seed dispersal on Juniperus communis recruitment on a Mediterranean mountain. J Veg Sci 12:839–848

    Article  Google Scholar 

  • García MB (2003) Demographic viability of a relict population of the critically endangered plant Borderea chouardii. Conserv Biol 17:1672–1680

    Article  Google Scholar 

  • García D, Zamora R (2003) Persistence and multiple demographic strategies in long-lived mediterranean plants. J Veg Sci 14:921–926

    Article  Google Scholar 

  • García D, Zamora R, Gómez JM et al (1999a) Bird rejection of unhealthy fruits reinforces the mutualism between juniper and its avian dispersers. Oikos 85:536–544

    Article  Google Scholar 

  • Garcı́a D, Zamora R, Hódar JA et al (1999b) Age structure of Juniperus communis L. in the Iberian peninsula: conservation of remnant populations in Mediterranean mountains. Biol Conserv 87:215–220

    Google Scholar 

  • García D, Gómez JM, Hódar JA et al (1996) Ecología reproductiva del enebro Juniperus communis L. en Sierra Nevada: factores que determinan la regeneración natural de las poblaciones. In: 1ª Conferencia Internacional: Sierra Nevada, Granada, pp 441–452

    Google Scholar 

  • Garcı́a D, Zamora R, Hódar JA et al (2000) Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biol Conserv 95:31–38

    Google Scholar 

  • García D, Zamora R, Gómez JM et al (2001) Frugivory at Juniperus communis depends more on population characteristics than on individual attributes. J Ecol 89:639–647

    Article  Google Scholar 

  • Gaston KJ, Spicer JI (2004) Biodiversity: an introduction, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Gómez JM (2003a) Herbivory reduces the strength of pollinator-mediated selection in the Mediterranean herb Erysimum mediohispanicum: consequences for plant specialization. Am Nat 162:242–256

    Article  Google Scholar 

  • Gómez JM (2003b) Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography 26:573–584

    Article  Google Scholar 

  • Gómez JM, GonzálezMegías A (2002) Asymmetrical interactions between ungulates and phytophagous insects: being different matters. Ecology 83:203–211

    Article  Google Scholar 

  • Gómez JM, GonzálezMegías A (2007) Long-term effects of ungulates on phytophagous insects. Ecol Entomol 32:229–234

    Google Scholar 

  • Gómez JM, Perfectti F (2010) Evolution of complex traits: the case of Erysimum corolla shape. Int J Plant Sci 171:987–998

    Article  Google Scholar 

  • Gómez JM, Zamora R (1999) Generalization in the interaction between Hormathophylla spinosa (Cruciferae) and its pollinators. Ecology 80:796–805

    Article  Google Scholar 

  • Gómez JM, Zamora R, Hódar JA et al (1996) Experimental study of pollination by ants in Mediterranean high mountain and arid habitats. Oecologia 105:236–242

    Article  Google Scholar 

  • Gómez JM, Abdelaziz M, Muñoz-Pajares J et al (2009a) Heritability and genetic correlation of corolla shape and size in Erysimum mediohispanicum. Evolution 63:1820–1831

    Article  Google Scholar 

  • Gómez JM, Abdelaziz M, Camacho JPM et al (2009b) Local adaptation and maladaptation to pollinators in a generalist geographic mosaic. Ecol Lett 12:672–682

    Article  Google Scholar 

  • Gómez JM, Abdelaziz M, Lorite J et al (2010) Changes in pollinator fauna cause spatial variation in pollen limitation. J Ecol 98:1243–1252

    Article  Google Scholar 

  • Gómez JM, GonzálezMegías A, Lorite J et al (2015) The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodivers Conserv 24:1843–1857

    Article  Google Scholar 

  • Gómez Aparicio L, Zamora R, Gómez JM et al (2004) Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14:1128–1138

    Google Scholar 

  • Gómez Aparicio L, Gómez JM, Zamora R et al (2005) Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. J Veg Sci 16:191–198

    Google Scholar 

  • Gómez Ortiz A, Oliva M, Salvà Catarineu M et al (2013) The environmental protection of landscapes in the high semiarid Mediterranean mountain of Sierra Nevada National Park (Spain): historical evolution and future perspectives. Appl Geogr 42:227–239

    Google Scholar 

  • Gutiérrez Larena B, Fuertes Aguilar J, Nieto Feliner G (2002) Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Mol Ecol 11:1965–1974

    Google Scholar 

  • Guzmán B, López CMR, Forrest A et al (2015) Protected areas of Spain preserve the neutral genetic diversity of Quercus ilex L. irrespective of glacial refugia. Tree Genet Genomes 11:1–18

    Article  Google Scholar 

  • Herrera CM (1985) Determinants of plant-animal coevolution: the case of mutualistic dispersal of seeds by vertebrates. Oikos 44:132–141

    Article  Google Scholar 

  • Huck S, Büdel B, Kadereit JW et al (2009) Range-wide phylogeography of the European temperate-montane herbaceous plant Meum athamanticum Jacq.: evidence for periglacial persistence. J Biogeogr 36:1588–1599

    Article  Google Scholar 

  • Jiménez Albarral JJ, Pleguezuelos JM, Santos X (2020) Positive effect of catastrophic winds on reptile community recovery in pine plantations. Basic Appl Ecol 46:1–9

    Google Scholar 

  • Kaliontzopoulou A, Pinho C, Harris DJ et al (2011) When cryptic diversity blurs the picture: a cautionary tale from Iberian and North African Podarcis wall lizards. Biol J Linn Soc 103:779–800

    Article  Google Scholar 

  • Kaliontzopoulou A, Carretero MA, Llorente G (2012) Morphology of Podarcis wall lizards from the Iberian Peninsula and North Africa: patterns of variation in a putative cryptic species complex. Zool J Linn Soc 164:173–193

    Article  Google Scholar 

  • Konstantinos K, Kokkoris IP, Panitsa M et al (2020) Spatial phylogenetics, biogeographical patterns and conservation implications of the endemic flora of Crete (Aegean, Greece) under climate change scenarios. Biology 8:199.

    Article  Google Scholar 

  • Körner C (2021) Alpine plant life. 3rd ed. Springer, Cham

    Google Scholar 

  • Kropf M, Comes HP, Kadereit JW (2006) Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol 172:169–184

    Article  Google Scholar 

  • Kropf M, Comes HP, Kadereit JW (2008) Causes of the genetic architecture of south-west European high mountain disjuncts. Plant Ecol Divers 1:217–228

    Article  Google Scholar 

  • Kunin WE, Gaston KJ (eds) (1997) The biology of rarity: causes and consequences of rare—common differences. Springer, Dordrecht

    Google Scholar 

  • Lamprecht A, Pauli H, Fernández Calzado MR et al (2021) Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain). Alp Bot 131:27–39

    Google Scholar 

  • Lizana M, Pedraza EM (1998) The effects of UV-B radiation on toad mortality in mountainous areas of central Spain. Conserv Biol 12:703–707

    Article  Google Scholar 

  • Lobo JM, Castro I, Moreno JC (2001) Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biol J Linn Soc 73:233–253

    Article  Google Scholar 

  • Lorite J (2016) An updated checklist of the vascular flora of Sierra Nevada (SE Spain). Phytotaxa 261:1–57

    Article  Google Scholar 

  • Lorite J, Ruiz M, Plaza-Arregui L (2019) Conservación ex-situ e in-situ. In: Peñas, J. & Lorite J. (eds.). Biología de la conservación de plantas en Sierra Nevada: Principios y retos para su preservación. pp 247–288. Editorial Universidad de Granada. Granada.

    Google Scholar 

  • Lorite J, Ros-Candeira A, Alcaraz-Segura D et al (2020) FloraSNevada: a trait database of the vascular flora of Sierra Nevada, southeast Spain. Ecology 101:ecy.03091

    Google Scholar 

  • Losapio G, Schöb C (2017) Resistance of plant–plant networks to biodiversity loss and secondary extinctions following simulated environmental changes. Funct Ecol 31:1145–1152

    Article  Google Scholar 

  • Losapio G, Schöb C (2020) Pollination interactions reveal direct costs and indirect benefits of plant–plant facilitation for ecosystem engineers. J Plant Ecol 13:107–113

    Article  Google Scholar 

  • Losapio G, Norton Hasday E, Espadaler X et al (2021a) Facilitation and biodiversity jointly drive mutualistic networks. J Ecol 109:2029–2037

    Google Scholar 

  • Losapio G, Fortuna MA, Bascompte J et al (2019) Plant interactions shape pollination networks via nonadditive effects. Ecology 100:e02619

    Google Scholar 

  • Losapio G, Schmid B, Bascompte J et al (2021b) An experimental approach to assessing the impact of ecosystem engineers on biodiversity and ecosystem functions. Ecology 102:e03243

    Google Scholar 

  • Lozano FD, Herbada DG, Rivero LM et al (2000) Areas of high floristic endemism in Iberia and the Balearic islands: an approach to biodiversity conservation using narrow endemics. Belg J Entomol 2:171–185

    Google Scholar 

  • Machordom A, Suarez J, Almodovar A et al (2000) Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations. Mol Ecol 9:1325–1338

    Article  Google Scholar 

  • Maia-Carvalho B, Gonçalves H, Ferrand N et al (2014) Multilocus assessment of phylogenetic relationships in Alytes (Anura, Alytidae). Mol Phylogenet Evol 79:270–278

    Article  Google Scholar 

  • Martín-Hernanz S, Martínez-Sánchez S, Albaladejo RG et al (2019) Genetic diversity and differentiation in narrow versus widespread taxa of Helianthemum (Cistaceae) in a hotspot: the role of geographic range, habitat, and reproductive traits. Ecol Evol 9:3016–3029

    Article  Google Scholar 

  • Matías L, Zamora R, Mendoza I, Hódar JA (2010) Seed dispersal patterns by large frugivorous mammals in a degraded mosaic landscape. Restor Ecol 18(5):619–627

    Article  Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345

    Article  Google Scholar 

  • Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann MO Bot Gard 84:112–127

    Article  Google Scholar 

  • Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13:1510–1513

    Article  Google Scholar 

  • Medrano M, López-Perea E, Herrera CM (2014) Population genetics methods applied to a species delimitation problem: endemic trumpet daffodils (Narcissus section Pseudonarcissi) from the southern Iberian Peninsula. Int J Plant Sci 175:501–517

    Article  Google Scholar 

  • Millán A, Picazo F, Sánchez-Fernández D et al (2013) Los Coleópteros acuáticos amenazados. In: Ruano F, Tierno de Figueroa M, Tinaut A (eds) Los Insectos de Sierra Nevada. 200 años de historia. Asociación Española de Entomología, Granada, pp 443–456

    Google Scholar 

  • Mira Ó, Sánchez-Prieto CB, Dawson DA et al (2017) Parnassius apollo nevadensis: identification of recent population structure and source–sink dynamics. Conserv Genet 18:837–851

    Article  Google Scholar 

  • Miraldo A, Faria C, Hewitt GM et al (2012) Genetic analysis of a contact zone between two lineages of the ocellated lizard (Lacerta lepida Daudin 1802) in south-eastern Iberia reveals a steep and narrow hybrid zone. J Zool Syst Evol Res 51:45–54

    Article  Google Scholar 

  • Mishler BD, Knerr N, González-Orozco CE et al (2014) Phylogenetic measures of biodiversity and neo-and paleoendemism in Australian Acacia. Nat Commun 5:1–10

    Article  Google Scholar 

  • Molina-Venegas R, Roquet C (2014) Directional biases in phylogenetic structure quantification: a Mediterranean case study. Ecography 37:572–580

    Article  Google Scholar 

  • Molina-Venegas R, Aparicio A, Pina FJ et al (2013) Disentangling environmental correlates of vascular plant biodiversity in a Mediterranean hotspot. Ecol Evol 3:3879–3894

    Article  Google Scholar 

  • Molina-Venegas R, Aparicio A, Lavergne S et al (2015) The building of a biodiversity hotspot across a land-bridge in the Mediterranean. Proc R Soc B Biol Sci 282:20151116

    Article  Google Scholar 

  • Molina-Venegas R, Aparicio A, Slingsby JA et al (2015) Investigating the evolutionary assembly of a Mediterranean biodiversity hotspot: deep phylogenetic signal in the distribution of eudicots across elevational belts. J Biogeogr 42:507–518

    Article  Google Scholar 

  • Molina-Venegas R, Aparicio A, Lavergne S et al (2016) How soil and elevation shape local plant biodiversity in a Mediterranean hotspot. Biodivers Conserv 25:1133–1149

    Article  Google Scholar 

  • Molina-Venegas R, Aparicio A, Lavergne J et al (2017) Climatic and topographical correlates of plant palaeo- and neoendemism in a Mediterranean biodiversity hotspot. Ann Bot 119:229–238

    Article  Google Scholar 

  • Molina-Venegas R, Aparicio A, Lavergne S et al (2018) Soil conditions drive changes in a key leaf functional trait through environmental filtering and facilitative interactions. Acta Oecol 86:1–8

    Article  Google Scholar 

  • Monnet AC, Cilleros K, Médail F et al (2021) WOODIV, a database of occurrences, functional traits, and phylogenetic data for all Euro-Mediterranean trees. Sci Data 8:89.

    Article  Google Scholar 

  • Moreno Saiz JC, Donato M, Katinas L et al (2013) New insights into the biogeography of south-western Europe: spatial patterns from vascular plants using cluster analysis and parsimony. J Biogeogr 40:90–104

    Article  Google Scholar 

  • Morueta-Holme N, Engemann K, Sandoval-Acuña P et al (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc Nat Acad Sci 112:12741–12745

    Article  Google Scholar 

  • Mota JF, Pérez-García FJ, Jiménez ML et al (2002) Phytogeographical relationships among high mountain areas in the Baetic Ranges (South Spain). Glob Ecol Biogeogr 11:497–504

    Article  Google Scholar 

  • Mota JF, Medina-Cazorla JM, Navarro FB et al (2008) Dolomite flora of the baetic ranges glades (South Spain). Flora 203:359–375

    Article  Google Scholar 

  • Muñoz-Pajares AJ, García C, Abdelaziz M et al (2017) Drivers of genetic differentiation in a generalist insect-pollinated herb across spatial scales. Mol Ecol 26:1576–1585

    Article  Google Scholar 

  • Muñoz-Pajares AJ, Abdelaziz M, Picó FX (2020) Temporal migration rates affect the genetic structure of populations in the biennial Erysimum mediohispanicum with reproductive asynchrony. AoB Plants 12:plaa037

    Google Scholar 

  • Múrria C, Sáinz-Bariáin M, Vogler AP et al (2020) Vulnerability to climate change for two endemic high-elevation, low-dispersive Annitella species (Trichoptera) in Sierra Nevada, the southernmost high mountain in Europe. Insect Conserv Divers 13:283–295

    Article  Google Scholar 

  • Nieto Feliner G (2014) Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspect Plant Ecol Evol Syst 16:265–278

    Article  Google Scholar 

  • Olivares FJ, Barea-Azcón JM, Pérez-López FJ et al (2011) Las mariposas diurnas de Sierra Nevada. Consejería de Medio Ambiente, Junta de Andalucía, Granada

    Google Scholar 

  • Pallarés S, Millán A, Mirón JM et al (2020) Assessing the capacity of endemic alpine water beetles to face climate change. Insect Conserv Divers 13:271–282

    Article  Google Scholar 

  • Pascual J, Blanco S, García-López M et al (2016) Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada National Park (Spain) through culture-dependent and independent approaches. PLoS One 11(1):e0146558.

    Google Scholar 

  • Peñas J, Lorite J (2019) Biología de la conservación de plantas en Sierra Nevada. Editorial Universidad de Granada, Granada, Principios y retos para su preservación

    Google Scholar 

  • Peñas J, Pérez-García FJ, Mota JF (2005) Patterns of endemic plants and biogeography of the Baetic high mountains (south Spain). Acta Bot Gallica 152:347–360

    Article  Google Scholar 

  • Peredo EL, Revilla MÁ, Jiménez-Alfaro B et al (2009) Historical biogeography of a disjunctly distributed, Spanish alpine plant, Senecio boissieri (Asteraceae). Taxon 58:883–892

    Article  Google Scholar 

  • Pérez JM, Ruiz-Martínez I, Granados JE et al (1997) The dynamics of sarcoptic mange in the ibex population of Sierra Nevada in Spain—influence of climatic factors. J Wildl Res 2:86–89

    Google Scholar 

  • Picó FX, Riba M (2002) Regional-scale demography of Ramonda myconi: remnant population dynamics in a preglacial relict species. Plant Ecol 161:1–13

    Article  Google Scholar 

  • Piñero FS, Tinaut A, Aguirre-Segura A et al (2011) Terrestrial arthropod fauna of arid areas of SE Spain: diversity, biogeography, and conservation. J Arid Environ 75:1321–1332

    Google Scholar 

  • Piñeiro A (2017) Topillo nival—Chionomys nivalis. In: Salvador A, Barja I (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid.

    Google Scholar 

  • Pistón N, Armas C, Schöb C et al (2015) Phylogenetic distance among beneficiary species in a cushion plant species explains interaction outcome. Oikos 124:1354–1359

    Article  Google Scholar 

  • Pistón N, Schöb C, Armas C et al (2016) Contribution of co-occurring shrub species to community richness and phylogenetic diversity along an environmental gradient. Perspect Plant Ecol Evol Syst 19:30–39

    Article  Google Scholar 

  • Pistón N, Michalet R, Schöb C et al (2018) The balance of canopy and soil effects determines intraspecific differences in foundation species’ effects on associated plants. Funct Ecol 32:2253–2263

    Article  Google Scholar 

  • Pugnaire FI, Losapio G, Schöb C (2021) Species interactions involving cushion plants in high-elevation environments under a changing climate. Ecosistemas 30:2186.

    Article  Google Scholar 

  • Qian H, Jin Y (2021) Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers 43:255–263

    Article  Google Scholar 

  • Rabinowitz D (1981) Seven forms of rarity. In: H Synge (ed) Biological aspects of rare plant conservation. Wiley, New York

    Google Scholar 

  • Ramírez-Valiente JA, Robledo-Arnuncio JJ (2015) Exotic gene flow affects fitness trait values but not levels of heritable trait variation in the southernmost population of Scots pine (Pinus sylvestris L. var. nevadensis). Biol Conserv 192:331–342

    Article  Google Scholar 

  • Recuero E, Canestrelli D, Vörös J et al (2012) Multilocus species tree analyses resolve the radiation of the widespread Bufo bufo species group (Anura, Bufonidae). Mol Phylogenet Evol 62:71–86

    Article  Google Scholar 

  • Ribera I, Castro A, Díaz JA et al (2011) The geography of speciation in narrow-range endemics of the ‘Haenydra’ lineage (Coleoptera, Hydraenidae, Hydraena). J Biogeogr 38:502–516

    Article  Google Scholar 

  • Ribera I, Vogler AP (2004) Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae). Mol Ecol 13:179–193

    Google Scholar 

  • Ruano F, Tierno de Figueroa J, Tinaut A (2013) Los insectos de Sierra Nevada: 2000 años de historia. Granada, Asociación Española de Entomología

    Google Scholar 

  • Sánchez-Herráiz MJ, Barbadillo LJ, Machordom A et al (2000) A new species of Pelodytid frog from the Iberian Peninsula. Herpetologica 56:105–118

    Google Scholar 

  • Sanllorente O, Ruano F, Tinaut A (2015) Large-scale population genetics of the mountain ant Proformica longiseta (Hymenoptera: Formicidae). Popul Ecol 57:637–648

    Article  Google Scholar 

  • Santamaría S, Galeano J, Pastor JM et al (2014) Robustness of alpine pollination networks: effects of network structure and consequences for endemic plants. Arct Antarct Alp Res 46:568–580

    Article  Google Scholar 

  • Santamaría S, Méndez M (2009) Cómo conservar las interacciones entre polinizadores y plantas en ecosistemas de alta montaña con ayuda de la teoría de redes complejas. Proyectos de investigación en parques nacionales 2009–2012. OAPN, Madrid, pp 111–122

    Google Scholar 

  • Santos X, Roca J, Pleguezuelos JM et al (2008) Biogeography and evolution of the smooth snake Coronella austriaca (Serpentes: Colubridae) in the Iberian Peninsula: evidence for Messinian refuges and Pleistocenic range expansions. Amphibia-Reptilia 29:35

    Article  Google Scholar 

  • Santos X, Brito JC, Caro J et al (2009) Habitat suitability, threats and conservation of isolated populations of the smooth snake (Coronella austriaca) in the southern Iberian Peninsula. Biol Conserv 142:344–352

    Article  Google Scholar 

  • Santos X, Rato C, Carranza S et al (2012) Complex phylogeography in the Southern Smooth Snake (Coronella girondica) supported by mtDNA sequences. J Zool Syst Evol Res 50:210–219

    Article  Google Scholar 

  • Sanz M, Schönswetter P, Vallès J et al (2017) Glacial survival in and recent long-distance dispersal to the Iberian Mountains: the phylogeographic history of Artemisia umbelliformis (Asteraceae). Bot J Linn Soc 183:587–599

    Article  Google Scholar 

  • Schöb C, Macek P, Pistón N et al (2017) A trait-based approach to understand the consequences of specific plant interactions for community structure. J Veg Sci 28:696–704

    Article  Google Scholar 

  • Simón-Porcar VI, Escudero M, Navarro L et al (2018) Using floristics, modern systematics and phylogenetics for disentangling biodiversity hotspots across scales: a Mediterranean case study. Plant Biosyst 152:1293–1310

    Article  Google Scholar 

  • Skidmore AK, Pettorelli N, Coops NC et al (2015) Environmental science: agree on biodiversity metrics to track from space. Nat News 523:403

    Article  Google Scholar 

  • Skidmore AK, Coops NC, Neinavaz E et al (2021) Priority list of biodiversity metrics to observe from space. Nat Ecol Evol 5:896–906

    Article  Google Scholar 

  • Soranzo N, Alia R, Provan J et al (2000) Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol Ecol 9:1205–1211

    Article  Google Scholar 

  • Stebbins GL, Major J (1965) Endemism and speciation in the California flora. Ecol Monogr 35:2–35

    Article  Google Scholar 

  • Swenson NG (2019) Phylogenetic ecology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Swenson NG, Umaña MN (2014) Phylofloristics: an example from the Lesser Antilles. J Plant Ecol 7:166–175

    Article  Google Scholar 

  • Thompson JD (2020) Plant evolution in the Mediterranean, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Tinaut A, Ruano F, Ros JL et al (2008) Sierra Nevada. La mayor biodiversidad de Iberia. Nova Ciencia 34:22–25

    Google Scholar 

  • Tinaut A (2013) Las hormigas. In: Ruano F, Tierno de Figueroa M, Tinaut A (eds) Los Insectos de Sierra Nevada, 200 años de historia. Asociación Española de Entomología, Granada, pp 392–409

    Google Scholar 

  • Todisco V, Gratton P, Cesaroni D et al (2010) Phylogeography of Parnassius apollo: hints on taxonomy and conservation of a vulnerable glacial butterfly invader. Biol J Linn Soc 101:169–183

    Article  Google Scholar 

  • Tonzo V, Ortego J (2021) Glacial connectivity and current population fragmentation in sky islands explain the contemporary distribution of genomic variation in two narrow-endemic montane grasshoppers from a biodiversity hotspot. Divers Distrib 27:1619–1633

    Article  Google Scholar 

  • Tonzo V, Bellvert A, Ortego J (2021) Reticulate evolutionary history in a recent radiation of montane grasshoppers revealed by genomic data. BioRxiv.

    Article  Google Scholar 

  • Unger GM, Vendramin GG, Robledo-Arnuncio JJ (2014) Estimating exotic gene flow into native pine stands: zygotic vs. gametic components. Mol Ecol 23:5435–5447

    Article  Google Scholar 

  • Valbuena-Carabaña M, Gil L (2013) Genetic resilience in a historically profited root sprouting oak (Quercus pyrenaica Willd.) at its southern boundary. Tree Genet Genomes 9:1129–1142

    Article  Google Scholar 

  • Valdés B, Talavera S, Fernández-Galiano E (eds) (1987) Flora vascular de Andalucía occidental (3 Vol). Ketres editora, Barcelona

    Google Scholar 

  • Valiente-Banuet A, Verdú M (2013) Plant facilitation and phylogenetics. Annu Rev Ecol Evol Syst 44:347–366

    Article  Google Scholar 

  • Valiente-Banuet A, Aizen MA, Alcántara JM et al (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29:299–307

    Article  Google Scholar 

  • Vargas P, Jiménez-Mejías P, Fernández-Mazuecos M (2020) ‘Endangered living fossils’(ELFs): long-term survivors through periods of dramatic climate change. Environ Exp Bot 170:103892

    Google Scholar 

  • Vela JM Bastazo G (2013) Los Crisomélidos. In: Ruano F, Tierno de Figueroa M, Tinaut A (eds) Los insectos de Sierra Nevada, 200 años de historia. Asociación Española de Entomología, Granada, pp 118–145

    Google Scholar 

  • Verdú JR, Numa C, Galante E (2011) Atlas y libro rojo de los invertebrados amenazados de España (especies vulnerables). Dirección General de Medio Natural y Polıtica Forestal, Ministerio de Medio Ambiente, Medio Rural y Marino, Madrid

    Google Scholar 

  • Verdú JR, Galante E (eds) (2009) Atlas de los invertebrados amenazados de España (especies en peligro crítico y en peligro). Organismo Autónomo Parques Nacionales, Madrid

    Google Scholar 

  • Von Humboldt A (1807) Essai sur la géographie des plantes: accompagné d’un tableau physique des régions équinoxiales, fondé sur des mesures exécutées, depuis le dixième degré de latitude boréale jusqu’au dixième degré de latitude australe, pendant les années 1799, 1800, 1801, 1802 et 1803. Schoell, Paris

    Google Scholar 

  • Zamora R, Barea-Azcón JM (2015) Long-term changes in mountain passerine bird communities in the Sierra Nevada (southern Spain): a 30-year case study. Ardeola 62:3–18

    Article  Google Scholar 

  • Zamora R, Gómez JM (1993) Vertebrate herbivores as predators of insect herbivores: an asymmetrical interaction mediated by size differences. Oikos 66:223–228

    Article  Google Scholar 

  • Zamora R, Matías L (2014) Seed dispersers, seed predators, and browsers act synergistically as biotic filters in a mosaic landscape. PLoS One 9(9):e107385.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for grant funding by MICINN-FEDER (CGL2013-45037-P, PGC2018 099608 B 100, PID2019-108895G), OAPN (296/2011), FEDER-US (1265280) and PAIDI2020 (P18-RT-3651). Lynna M. Kiere kindly revised the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Arroyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arroyo, J. et al. (2022). Sierra Nevada, a Mediterranean Biodiversity Super Hotspot. In: Zamora, R., Oliva, M. (eds) The Landscape of the Sierra Nevada. Springer, Cham. https://doi.org/10.1007/978-3-030-94219-9_2

Download citation

Publish with us

Policies and ethics