Skip to main content

Software for Modeling the Electron-Beam Welding in Steady State

  • Conference paper
  • First Online:
Advances in Automation III (RusAutoCon 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 857))

Included in the following conference series:

  • 400 Accesses

Abstract

At some of industrial enterprises, electron-beam welding technology is used in processes requiring the formation of permanent connections between equipment elements. However, its application is complicated by the need for accurate selection of the values of technological parameters. The software system proposed in this work allows simulating the temperature distribution over the volume of the products to be joined in the process of electron beam welding. The theory of welding processes is used as a mathematical apparatus. The software system has a modular structure and consists of six subsystems that implement specific functionality. All data, both input for mathematical models and results are stored in a single database, consisting of nine joined tables. The use of the proposed software allows both to reduce the cost and simplify the process of adjusting the technological parameters of electron beam welding, and to form the basis for the further implementation of effective control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frank, A.G., Dalenogare, L.S., Ayala, N.F.: Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 210, 15–26 (2019)

    Article  Google Scholar 

  2. Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in the industry 4.0 era. In: 2014 12th IEEE International Conference on Industrial Informatics (INDIN), pp. 289–294 (2014)

    Google Scholar 

  3. Bai, C., Dallasega, P., Orzes, G., Sarkis, J.: Industry 4.0 technologies assessment: a sustainability perspective. Int. J. Prod. Econ. 229, 107776 (2020)

    Google Scholar 

  4. Saucedo-Martínez, J.A., Pérez-Lara, M., Marmolejo-Saucedo, J.A., Salais-Fierro, T.E., Vasant, P.: Industry 4.0 framework for management and operations: a review. J. Amb. Intell. Hum. Comput. 9(3), 789–801 (2018)

    Google Scholar 

  5. Ghobakhloo, M.: Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 252,119869 (2020)

    Google Scholar 

  6. Zheng, T., Ardolino, M., Bacchetti, A., Perona, M.: The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review. Int. J. Prod. Res. 59(6), 1922–1954 (2021)

    Google Scholar 

  7. Yunlian, Q., Ju, D., Quan, H., Liying, Z.: Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mater. Sci. Eng. A280, 280(1), 177–181 (2000)

    Google Scholar 

  8. Salomatova, E.S.: Electron beam welding - from invention to the present day. Bull. Perm Natl. Res. Polytech. Univ. Mech. Eng. Mater. Sci. 1, 74–87(2013)

    Google Scholar 

  9. Permyakov, G.L., Olshanskaya, T.V., Belenkiy, V.Ya., Trushnikov, D.: Simulation of electron beam welding to determine the parameters of welded joints of dissimilar materials. Bull. Perm Natl. Res. Polytech. Univ. Mech. Eng. Mater. Sci. 1(4), 48–58 (2013)

    Google Scholar 

  10. Yang, Z., Fang, Y., He, J.: Numerical investigation on molten pool dynamics and defect formation in electron beam welding of aluminum alloy. J. Mater. Eng. Perform. 29(10), 6570–6580 (2020). https://doi.org/10.1007/s11665-020-05111-2

    Article  Google Scholar 

  11. Yang, Z., Fang, Y., He, J.: Numerical simulation of heat transfer and fluid flow during vacuum electron beam welding of 2219 aluminium girth joints. Vacuum 175, 109256 (2020)

    Google Scholar 

  12. Kaisheva, D., Angelov, V., Petrov, P.: Simulation of heat transfer at welding with oscillating electron beam. Can. J. Phys. 97(10), 1140–1146 (2019)

    Article  Google Scholar 

  13. Mladenov, G., Koleva, E., Belenky, V.Ya., Trushnikov, D.N.: Modeling and optimization of electron beam welding of steels. Bull. Perm Natl. Res. Polytech. Univ. Mech. Eng. Mater. Sci. 16(4), 7–21 (2014)

    Google Scholar 

  14. Kanigalpula, P.K.C., Jaypuria, S., Pratihar, D.K., Jha, M.N.: Experimental investigations, input-output modeling, and optimization of spiking phenomenon in electron beam welding of ETP copper plates. Measurement 129(1), 302–318 (2018)

    Article  Google Scholar 

  15. Luo, M., Hu, R., Liu, T., Wu, B., Pang, S.: Optimization possibility of beam scanning for electron beam welding: physics understanding and parameters selection criteria. Int. J. Heat Mass Transf. 127(1), 1313–1326 (2018)

    Article  Google Scholar 

  16. Ignat'eva, M.A., Kadyrov, R.F., Mazo, A.B.: Calculation of the temperature field of a plate when electron-beam welding. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 148(4), 23–34 (2006)

    Google Scholar 

  17. Das, D., Das, A.K., Pratihar, D.K., Roy, G.G.: Prediction of residual stress in electron beam welding of stainless steel from process parameters and natural frequency of vibrations using machine-learning algorithms. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235, 2008–2021 (2020)

    Article  Google Scholar 

  18. Luo, M., Hu, R., Liu, T., Wu, B., Pang, S.: Optimization possibility of beam scanning for electron beam welding: physics understanding and parameters selection criteria. Int. J. Heat Mass Transf. 127, 1313–1326 (2018)

    Article  Google Scholar 

  19. Konovalov, A.V.: Theory of Welding Processes. Izd-vo MGTU im. N.E. Bauman, Moscow (2007)

    Google Scholar 

  20. MySQL. https://www.mysql.com/. Accessed 5 Jan 2021

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tynchenko, V., Kurashkin, S. (2022). Software for Modeling the Electron-Beam Welding in Steady State. In: Radionov, A.A., Gasiyarov, V.R. (eds) Advances in Automation III. RusAutoCon 2021. Lecture Notes in Electrical Engineering, vol 857. Springer, Cham. https://doi.org/10.1007/978-3-030-94202-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94202-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94201-4

  • Online ISBN: 978-3-030-94202-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics